More details about the research being developed in Prof. Thanh Nguyen’s research group can be found in UConn Today.
Faculty News
Prof. Xinyu Zhao Awarded American Chemical Society Grant for Research on Bluff-Body Stabilized Premixed Flame
Dr. Xinyu Zhao has been awarded an American Chemical Society Grant through the Petroleum Research fund for her research entitled “A computational study of the lean blow-off mechanisms for a bluff-body stabilized premixed flame.” The fund supports research directly related to petroleum and fossil fuels at nonprofit institutions around the world.
Increasingly stringent emission requirements have recently generated a great deal of interest in lean and stable combustors, i.e. combustors that manipulate air-fuel ratios to increase fuel efficiency and reduce emissions while maintaining stable combustion. One way to stabilize flames in a combustor is through bluff bodies, but the events that lead to lean blowoff (flame extinction) remain unclear due to a variety of factors that require consideration (e.g. highly-transient turbulent flow fields and finite-rate chemistry).
Professor Zhao’s research aims to further the understanding of this phenomenon by using a large-eddy simulation to model and investigate a bluff-body stabilized lean premixed propane flame undergoing intense turbulence. UConn ME colleagues in Professor Baki Cetegen’s group carry out the experiments using laser diagnostics. The proposed modeling study allows flame characteristics such as turbulent flame speed, flame surface densities, strain rates, and various chemical and flow time scales relevant to blowoff to be studied and compared with real world experiments. Discovering the key time scales that lead to blowoff could yield controlling strategies and operation conditions for bluff-body stabilized flames.
Recently Professor Zhao also received the Young Investigator (YIP) Award from the Air Force Office of Science and Research. Read more about her research on her website.
Prof. Zhao Awarded Air Force Young Investigator Program for Work on Turbulent Premixed Flames
The Air Force Office of Scientific Research (AFOSR) Young Investigator Research Program (YIP) has honored Professor Xinyu Zhao as one of just 43 scientists and engineers awarded YIP grants for her research project titled “Pockets in Highly Turbulent Premixed Flames: Physics and Implications on Modeling.” The grant is worth a total of $450,000 over three years and is intended to foster the research of young investigators in science and engineering.
Dr. Zhao’s research aims to understand the underlying physical processes of highly turbulent premixed flames, which impact the efficiency and stability of modern aeronautical engines.
The investigation targets two specific “pockets”: the fresh-mixture pockets on the product side of the flame (“FiP”) and the product pockets on the fresh mixture side of the flame (“PiF”). The existence of these pockets is a distinctive feature of flames within the broken reaction zones, and is hypothesized to contribute to the deviation of the flame statistics from those within the flamelet regimes.
Aiding the current understanding of combustion in aeronautical engines could have far reaching impacts on a number of fields and industries and would be of great benefit to the Air Force. A better understanding of the factors that affect combustion can eventually allow engineers to improve the efficiency of these engines. You can read more about Professor Zhao’s research on her laboratory’s website.
Prof. David Pierce Wins 3 New Grants
Assistant Professor David Pierce will be deploying his Interdisciplinary Mechanics Laboratory to tackle three projects that just received funding: two from the National Science Foundation (NSF) and one from the U.S. Army Natick Soldier Research Development and Engineering Center (NSRDEC).
The first NSF-funded project (titled Biomechanical Simulations of Progressing Osteoarthritis to Advance Understanding and Therapies) explores how stress distributions within human cartilage tissue affect the progression of osteoarthritis (OA). As Principle Investigator (PI), Prof. Pierce will collaborate with Co-PI Prof. Cory Neu (CU Boulder). Their team will use mechanical and imaging experiments, simulations of virtual evolving in vivo human cartilage, and longitudinal Magnetic Resonance Images (MRIs) from the NIH-funded Osteoarthritis Initiative (OAI) database to characterize how intra-tissue stress distributions relate to progressing OA.
The second NSF-funded project (titled Understanding the Multiscale Mechanics of Nerve Endings to Address Visceral Pain) investigates the biomechanics of colorectal tissue and the micromechanical environment of the tissue’s sensory nerve endings. As Co-PI, Prof. Pierce will collaborate with the project’s PI, fellow UConn Professor Bin Feng. In colorectal tissue, mechanical stretch (distention) results in visceral pain, the signal for which arises in the peripheral nervous system (PNS). Most drug treatments of visceral pain affect both peripheral and central nervous systems (CNS) and result in adverse side effects on the CNS. Advanced understanding of the biomechanics of visceral nerves could lead to more specific and effective therapeutic targets.
Finally, as PI for the NSRDEC-funded project (titled Developing Biofidelic Models as Surrogates for Human Subjects in Protective Clothing and Individual Equipment and Augmentation Testing) Prof. Pierce and his group, in collaboration with NSRDEC, aim to create subject-specific multiscale models of knee joints and cartilage to predict performance of Soldiers carrying various loads. The products of this research will clarify how Soldier-specific loads translate to soft tissues in the joint and how cyclic fatigue under body-borne loads impacts joint health to optimize physical performance and reduce the risk of injury.
For more information about Prof. Pierce’s research, see his Interdisciplinary Mechanics Laboratory website.
New technology from Prof. Thanh Nguyen published in Science
The latest issue of Science features a new technology invented and developed by our very own assistant professor Dr. Thanh D. Nguyen. Prof. Nguyen’s brainchild, developed during his postdoc with Prof. Robert Langer at MIT, offers the latest advance in 3D manufacturing for microstructures of biomaterials: StampEd Assembly of polymer Layers, or SEAL for short. The reliance of current 3D printing techniques on potentially toxic impurities (e.g. UV-curing agents) for formulating printable inks poses clear problems for bio and medical applications. SEAL, on the other hand, can create nearly any 3D micro-objects of pure biopolymers (e.g. polymers used for surgical sutures) with complex geometries and at high resolution. Such enhanced biocompatibility of fabricated 3D microstructures for medical applications enables a broad scope of exciting new possibilities. For example, Prof. Nguyen along with other researchers at MIT used SEAL to create 3D core-shell micro-particles containing biological cargos (e.g. vaccines), which can be programed to sequentially release at different times or even at specific locations within the body. The compelling implications of this technique include the potential for a new set of single-injection vaccines/drugs, which could avoid the repetitive, painful, expensive, and inconvenient injections often required to administer vaccines and drug therapies like insulin or growth hormone. To view the article, click here.
Emeritus Prof. Lee Langston goes to Italy with the ASME History & Heritage Committee
Professor Emeritus Lee Langston, a member of the ASME History & Heritage Committee, recently traveled to Palermo, Italy, to represent UConn and ASME at the ceremony recognizing the engine collection housed within the University of Palermo’s Museum of Engines and Mechanisms.
From left to right: Giuseppe Genchi, Terry Reynolds, and Lee Langston. Photo by ASME/Wil Haywood.
More details can be found on the ASME website.
Since the invention of the wheel, mechanical innovation has critically influenced the development of civilization and industry as well as public welfare, safety and comfort. Through its History and Heritage program, ASME encourages public understanding of mechanical engineering, fosters the preservation of this heritage and helps engineers become more involved in all aspects of history.
Professor Emeritus Lee Langston is actively involved in the committee’s ASME Landmark program. Historic Mechanical Engineering Landmarks are existing artifacts or systems representing a significant mechanical engineering technology. They generally are the oldest extant, last surviving examples typical of a period, or they are machines with some unusual distinction. Over 270 Landmarks have been designated.
Prof. Savas Tasoglu: an inexpensive and portable method of monitoring and predicting sickle cell related strokes.
Prof. Savas Tasoglu is working on an inexpensive and portable method of monitoring and predicting sickle cell related strokes by measuring sickle cell disease with a smart phone.
Lee Langston Receives ASME Sawyer Award
By Kristi Allen
Mechanical Engineering professor emeritus Lee Langston is the 2015 recipient of the R. Tom Sawyer Award presented by the American Society of Mechanical Engineers. The Sawyer award is conferred on an individual “who has made important contributions to the toward the advancement of the gas turbine industry.” Forty-three men from all over the world have received the award, which is a major industry honor.
In his 30 year career at Pratt & Whitney and UConn, Langston pioneered the measurement, understanding and prediction of secondary flow in gas turbines, or jet engines. His research in gas turbine flows is known collectively as the Langston cascade. He has also authored more than 75 scholarly journal articles and holds one patent. “I started working on the problem [of complicated flows in gas turbines] in 1974…All the work is still referred to,” said Langston. The R. Tom Sawyer award is closely tied to the history of the gas turbine engine. The award was named for Robert Thomas Sawyer, an earlier pioneer in the industry who founded the ASME’s International Gas Turbine Institute, which grants the award.
Langston has been involved with the International Gas Turbine Institute since 1974, serving as a member of the board of directors several times and as vice president between 1997 and 2000. The list of Sawyer award recipients includes English engineer Sir Frank Whittle and German physicist Hans von Ohain, the two men credited with independently developing the first jet engines in the late 1930’s. “I’m honored to be included on the list, especially with those two men,” Langston said. The award was presented to Langston this summer at the annual International Gas Turbine Institute conference, TURBO EXPO, held this year in Montreal. Langston earned his bachelor of science in mechanical engineering at UConn in 1959 and his Ph.D. from Stanford in 1964. He returned to Connecticut and worked as a research engineer at Pratt & Whitney from 1964 until 1977 when he joined the UConn engineering faculty as an associate professor.
Langston became a full professor in 1983, served as interim dean of the School of Engineering from 1997 to 1998 and was awarded the title of professor emeritus in 2003. Langston has seen the gas turbine industry transform and grow immensely over the course of his career. The efficiency and reliability of gas turbine engines has allowed both commercial and military aviation to expand to once unimaginable places. “It’s fantastic; aviation is booming,” said Langston. “For some reason, it doesn’t get the same kind of attention that other technologies get.” Gas turbine engines cost about 10 to 20 percent of what the original aviation piston engines cost to maintain and average just one in-flight failure about every 30 years. The engines themselves have improved in efficiency over the years, creating major cost savings for airlines and making air travel affordable for the masses. There are currently almost 20,000 planes in the worldwide air transport fleet, with that number projected to grow 75 percent by 2030 . In 2011, the total aviation gas turbine engine market totalled $32 billion.
Gas turbines engines are also used in a growing number of applications on land, particularly in power plants. Langston helped bring some of this technology to UConn in the form of the co-generation power plant opened in 2006. The plant uses three gas turbine engines to generate power for the campus. They’re more efficient and environmentally-friendly than the original oil-burning engines the plant used because they use cleaner natural gas and harness both electrical energy and steam energy from a single source. “Gas turbine engines reduce CO2 emissions by almost 75 percent when they replace coal-fired power plants,” said Langston. “I was really proud to be a part of updating UConn’s power plant.” In addition to his work as a researcher and professor, Langston has also had a distinguished career as a mountain climber. Two of his most notable climbs include summiting Chimborazo Volcano in Ecuador, the farthest point from Earth’s center, and the first ascent of a peak in Pakistan known as T3 led by legendary climber Willi Unsoeld. When asked what it’s like to stand at the top of a mountain, Langston said “there’s this moment of exhilaration, but then you have to go down…
Most accidents happen on the descent.” Langston said caution has been the key to avoiding disaster during a climb. He spoke about turning around just a few hundred meters from the summit of a volcano in Ecuador which had begun to spew intense sulphuric gases. Langston and his wife continue to travel frequently. He currently writes a quarterly column and an annual review of the gas turbine industry for Mechanical Engineering magazine and serves on the ASME’s Technical Committee on Publications and Communications and the History and Heritage Committee. Langston has spent his career contributing to a field that has revolutionized global transportation and energy production, a field which looks to be no less innovative in the coming decades. He looks forward to watching the growth of the industry in the future. Published: November 18, 2015
Prof. Baki M. Cetegen is the President (2018-2020) of Connecticut Academy of Science and Engineering.
Prof. Baki M. Cetegen has been elected to serve as Vice President & President elect (2016-2018), President (2018-2020) and Past President (2020-2020) of Connecticut Academy of Science and Engineering.