Uncategorized

New Master’s For Digital Design and Manufacturing Innovators

by Claire Tremont

Students can earn this degree remotely from anywhere in the world, offering an accessible path to advanced engineering education

Students enrolled in this degree take classes such as CAD for Industrial Design; Data Science for Materials and Manufacturing; Manufacturing Automation and Industry 4.0; and many other innovative courses (Christopher LaRosa / UConn College of Engineering Photo)

As academia works overtime to meet the needs of a rapidly expanding and evolving industry, one UConn Engineering graduate program is embracing the challenge to educate engineers to innovate with the latest digital design and manufacturing technologies. 

Computer-generated manufacturing designs.
Contributed illustration, made with artificial intelligence

The Master of Engineering (MENG) in Digital Design and Manufacturing is a 30-credit online graduate degree for engineers wishing to advance their knowledge in digital tools and models used in modern industries.

Students will learn and master the tools shaping the future of engineering, from digital twins and 3D design software to machine learning and data science, in a part-time program designed for their success. 

Together with faculty from the School of Mechanical, Aerospace and Manufacturing Engineering, students will benefit from world-class research and teaching capabilities backed by significant funding from the likes of the National Science Foundation and various Departments of Defense, Energy, and Education funding agencies. 

Continue reading

Prof. Anna Tarakanova Receives a $3M RO1 Grant From the National Institutes of Health

Researchers from the School of Mechanical, Aerospace, and Manufacturing Engineering in UConn’s College of Engineering, pursue groundbreaking research to understand the impact of aging-related physicochemical modifications on the structure and function of elastin, a vital protein that imparts elasticity and recoil function to many connective tissues in the human body, including within elastic arteries. These modifications play a significant role in age-related diseases such as diabetes, motivating the importance of studying elastin’s behavior in aging arteries.

Led by Dr. Anna Tarakanova, the project has been awarded a $3 million R01 grant from the National Institutes of Health (NIH) through 2028 to further investigate elastin and its role in arterial biomechanics in health and aging.

Read more in the UConn Today article.

New Site Launched

We are proud to announce the launch of our new website. Built on the the university Aurora service, this new version of our site sports a modern look, faster loading times, and works on all mobile and tablet devices.

Biodegradable Ultrasound Opens the Blood-Brain Barrier

A new, biodegradable piezoelectric device far more powerful than previous devices could make brain cancers more treatable, a team of Mechanical Engineering researchers report in the June 14 issue of Science Advances.

The research team. From left to right: Kazem Kazerounian, Thanh Nguyen, Feng Lin, Thinh Le, Meysam Chorsi, and Horea Ilies.

The group, developed a novel sensor from electrospun crystals of glycine, an amino acid that is a common protein in the body, and has been recently found to be strongly piezo-electric.

Read more by following the link below:
Continue reading

Prof. Bilal receives the 2023 Phononics Young Investigator Award

This year’s Phononics Young Investigator Award goes to our own ME Prof. Osama Bilal. “The Phononics Young Investigator Award (YIA) is presented by the International Phononics Society to an early-career researcher who demonstrates research excellence in the field of phononics (including phononic crystals, acoustic/elastic metamaterials, nanoscale phonon transport, wave propagation in periodic structures, coupled phenomena involving phonons, topological phononics, and related areas).” As a recipient, Prof. Bilal will deliver the 2023 Phononics Young Investigator Award Lecture during the upcoming conference in Manchester, UK.

A quieter world through materials by design

A new paper published in Applied Physics Letters co-authored by Prof. Osama Bilal and his PhD student introduces materials that can simultaneously block sound and vibrations at tunable frequencies by design.

Concept: (a) Auxetic vibro-acoustic metamaterial can attenuate both elastic and acoustic waves. (b) By applying an external load to the metamaterial, we can tune the attenuation frequency range for both airborne sound and mechanical vibrations, in all directions. Image courtesy of Prof. Bilal.

Continue reading

Three ME Faculty Members win NSF CAREER Awards in 2022

NSF Early Career Development (CAREER) Program awards are highly prestigious, offered to early-career faculty members who demonstrate the potential to serve as academic role models in research and education.

Three ME faculty members have received this prestigious award in 2022. Congratulations to all three recipients!

Hongyi Xu Anna Tarakanova George Matheou

Prof. Xu’s award will support his group’s research on design of mixed stochasticity structural systems. The award received by Prof. Tarakanova will support fundamental research to understand complex changes to elastin that occur in aging and disease. Prof. Matheou’s grant will focus on large scale computational models of low could transitions in the atmosphere to support a better understanding of their impact on climate change.

With these three awards, the total number of NSF CAREER or DoD Young Investigator Awards won by ME faculty since 1996 increases to 25 with seven of these awards having been received in the last three years!