Faculty News

Thanh Nguyen named the ACell Young Investigator Faculty Award Winner

Prof. Thanh Nguyen receives the highly regarded ACell Young Investigator Faculty Award at the 2020 Regenerative Medicine Workshop, which brings together leading experts from across the expansive field of regenerative medicine. Prof. Nguyen will deliver a keynote speech along with other world renowned researchers in the field of regenerative medicine during the event, which will take place at the Wild Dune Resort, South Carolina, in March 2020.

Additional details are available through the workshop website.

Buzzing Through the Blood-Brain Barrier

Prof. Thanh Nguyen’s research group has reported on the first biodegradable ultrasonic transducer that can help medication move from blood vessels into brain tissues and circumvent the body’s traditional defense mechanisms.The work is published in the journal of PNAS (Proceeding of National Academy of Science) (Dec 2019), and the two first authors of this paper are PhD students in Nguyen lab, namely Thinh Le and Eli Curry.

A PLLA piezoelectric nanofiber film (left) to generate an acoustic wave (middle) that can open the blood-brain barrier (BBB) (right) to deliver medicines into the brain tissue.

When implanted into the brain, this novel device can generate ultrasonic waves for buzzing drugs through the blood-brain barrier (BBB) to treat brain diseases (e.g. cancers), and then self-vanish, avoiding the need of invasive removal surgery that is often required for conventional medical implants. More details can be found in the UConn Today article.

Professor Matheou’s Exhibit @ the Benton Blends Art and Science With Teaching

George Matheou and his exhibit at the William Benton Museum of Art. (UConn Photo/Eli Freund)

By: Alexandra Meropoulos, Student Written Communications Specialist, UConn School of Engineering

Art and science are two fields that appear to be worlds apart at first glance, but according to George Matheou, assistant professor of mechanical engineering, the intersection between the two are actually extremely important. This notion became the inspiration behind his art exhibit called Fluid Dynamics in Art and Nature at the William Benton Museum of Art. 

Read more by following this link.

Norato Receives ASME Young Investigator Award

by Kassidy Manness
ME Communications
kassidy.manness@uconn.edu

During the 45th Annual Design Automation Conference, held by the American Society of Mechanical Engineers (ASME) this past summer, Mechanical Engineering Professor Julián Norato has been awarded the prestigious Design Automation Young Investigator Award.

Prof. Norato receiving the award from Prof. Chris Mattson on behalf of the Design Automation Committee

This award is given once each year “to recognize an outstanding young investigator who is making noteworthy contributions in the area of design automation, including research in design representation, design optimization, design evaluation, and/or design integration.” The award was presented at the ASME’s Design Automation Conference, which was held on August 18-21, 2019 in Anaheim, California. This conference brings together every year international experts in the field of design automation.

Norato was given this award based on the work and research he has done in topology optimization. Topology optimization is a computational methodology to automatically design parts to maximize structural strength with minimal amounts of material in the most efficient and effective way. A major focus of Norato’s research group is to do the topology optimization employing exclusively certain shapes, like bars or plates, that make manufacturing with conventional processes easier. 

 

An example of the work Norato does with topology optimization

Prof. Christopher Mattson presented the award to Prof. Norato “in recognition of his expertise in topology optimization, specifically his advances in stress-based topology optimization and development of the geometry projection method” and to “recognize his continuous and dedicated service to the Design Automation Conference and his outreach to the community.” 

Fueling the Fire: Studying Flame Behavior to Improve Combustion Systems

The power you feel underneath you when you’re on a plane as it takes off is tremendous. The physics that enable the remarkable feat of lifting a 175,000-pound midsize commercial aircraft into the sky and keeping it there are just as incredible – and complicated.

There are four components to a commercial aircraft gas turbine engine: the fan that produces most of the thrust, the compressor, which compresses the incoming air, the combustor which burns the fuel to create high-energy gas, and the turbine that produces work from that gas to power the fan and exhaust to produce additional thrust.

The challenge in this system is keeping the flame in the combustor burning. Flame blowoff can occur when the air flow speed is very high, or the fuel-air mixture is weak so that the flame cannot be stabilized, so it moves downstream and eventually extinguishes itself.

University of Connecticut professor of mechanical engineering, Baki Cetegen has received $320,000 from the National Science Foundation to study this problem by investigating how different fuels and high levels of flow turbulence affect the occurrence of flame blowoff.

Read more on UConn Today

Chih-Jen (Jackie) Sung Named Combustion Institute Fellow

By: Eli Freund, Editorial Communications Manager, UConn School of Engineering 

The UConn School of Engineering is proud to announce that Mechanical Engineering Professor Chih-Jen Sung has been recognized as one of the 2019 Class of Fellows for The Combustion Institute.

Sung joins a class of 38 accomplished international scholars from industry, academia, and the public sector, and was recognized for “novel contributions to flame dynamics and structure, and development of rapid compression machines to enhance understanding of low-temperature chemistry.”

Read the School of Engineering announcement.