Month: April 2022

Additive Manufacturing – The New Revolution

http://s.uconn.edu/meseminar05.13.22

Abstract: In this seminar, Changjie will give an overview of GE Research first, followed by discussion of additive manufacturing. On the additive manufacturing, he will cover additive designs, additive digital tools, additive process monitoring and control, additive supply chain, and additive applications. He welcomes any individual discussions after the seminar.

Biographical Sketch: Changjie Sun has a Ph.D. in Mechanical Engineering. He is currently a senior principal engineer in the Materials and Mechanical Systems Organization at GE Research. He is the technical focal for structure design/analysis and mechanical synthesis. He has been working on jet engine and gas turbine design and analysis for 16 years involving metals, polymer matrix composites, and ceramic matrix composites. Changjie is active in seeking funding opportunities from funding agencies such as DOE and DOD.

Three ME Faculty Members win NSF CAREER Awards in 2022

NSF Early Career Development (CAREER) Program awards are highly prestigious, offered to early-career faculty members who demonstrate the potential to serve as academic role models in research and education.

Three ME faculty members have received this prestigious award in 2022. Congratulations to all three recipients!

Hongyi Xu Anna Tarakanova George Matheou

Prof. Xu’s award will support his group’s research on design of mixed stochasticity structural systems. The award received by Prof. Tarakanova will support fundamental research to understand complex changes to elastin that occur in aging and disease. Prof. Matheou’s grant will focus on large scale computational models of low could transitions in the atmosphere to support a better understanding of their impact on climate change.

With these three awards, the total number of NSF CAREER or DoD Young Investigator Awards won by ME faculty since 1996 increases to 25 with seven of these awards having been received in the last three years!

NSF EDSE: Forging New Directions for Design Research

http://s.uconn.edu/meseminar05.06.22

Abstract: In this overview of the Engineering Design & Systems Engineering (EDSE) Program at the National Science Foundation, NSF Program Director Kathryn Jablokow will highlight core themes of the program and new opportunities relevant to the engineering design and systems design communities, along with a few key principles for successful proposal writing. In addition, she will discuss her vision for design research, including the implications of treating design as a system and the prospects that open up when we take things to extremes.

Biographical Sketch: Dr. Kathryn Jablokow is a Professor of Engineering Design and Mechanical Engineering at Penn State University and currently serves the National Science Foundation in the Civil, Mechanical and Manufacturing Innovation Division as Program Director for the Engineering Design and Systems Engineering program. Dr. Jablokow is widely recognized for her expertise in cognitive diversity and its impact in engineering education and practice, including manufacturing education and student design experiences. Her recent research includes the use of rapid manufacturability analysis tools to enhance decision-making in engineering design education, as well as the characterization and mediation of manufacturing fixation in design education and practice (i.e., interventions to address an engineer’s overreliance on a specific manufacturing technique). Dr. Jablokow has received many major teaching and research awards, including the W. M. Keck Foundation Teaching Excellence Award, the American Society of Mechanical Engineers (ASME) Ruth and Joel Spira Outstanding Design Educator Award, and multiple Best Paper Awards. Dr. Jablokow is a Fellow of ASME, a Senior Member of IEEE, and a Member of ASEE, Sigma Xi, and the Design Society. She earned her BS, MS, and PhD degrees in electrical engineering from The Ohio State University in 1983, 1985, and 1989, respectively.

Translating Brain Computer Interfaces: are we reaching an inflection point towards wide spread patient use?

http://s.uconn.edu/meseminar04.29.22

Abstract: Implantable Brain Computer Interfaces appear to be heading towards an inflection point: in the past decade the number and frequency of major technological advances and first in human demonstrations of new capabilities has started increasing significantly. The first generations of commercially available products appear to be imminent. They have the potential to become tangible tools to restore lost function and are serious contenders to address a variety of neurological disorders. The real life settings associated with in home use of these technologies lead to reprioritization of existing as well as the emergence of novel practical and fundamental challenges and opportunities. How do we identify and prioritize user, clinician and caretaker needs? What is possible today and what is a realistic technological roadmap that meets those needs. What should public and private investments be focused on?

Biographical Sketch: Dr. Solzbacher is Professor and Chair of the Department of Electrical and Computer Engineering. He also holds adjunct appointments as Professor in Materials Science and Professor of Biomedical Engineering at the University of Utah. He is a fellow of the American Institute for Medical and Biological Engineers AIMBE and a Fellow of the Institute of Electrical and Electronics Engineers IEEE. He is Co-Founder, President and Executive Chairman of Blackrock Microsystems/Neurotech. His research focuses on harsh environment microsystems and materials, including implantable, wireless microsystems for biomedical and healthcare applications, and on high temperature and harsh environment compatible micro sensors. He is co-founder of several companies and member of a number of company and public private partnership advisory and reviewer boards and conference steering committees in Europe and the US. He is author of over 190 journal and conference publications, 5 book chapters and 16 pending patents.

Wave propagation in meta-structures: beyond conventional limitations

http://s.uconn.edu/meseminar4.22.22

Abstract: Meta-structures are artificially engineered structures designed to exhibit properties not found in conventional materials. By careful design, one can obtain unprecedented control over various physical properties. Examples in mechanics includes structures having unique static and dynamic properties like negative Poisson’s ratio, zero shear modulus and non-reciprocal wave propagation. 

Waveguides transporting energy and information are widely used in bulk and surface acoustic wave devices. They have stringent requirements of a dispersion bandgap and suffer from losses due to localization and scattering at defects or imperfections. In this talk, I will illustrate how these limitations can be overcome by a new class of meta-structures: symmetry protected waveguides. Inspired by recent developments in quantum condensed matter physics, such waveguides allow for wave propagation along an interface or boundary, immune to the presence of structural defects. I will present three examples of different classes of such waveguides. The first example will show a general design paradigm to localize energy in a structure at a desired frequency, while the second and third examples will illustrate backscattering free wave guiding and wave propagation along a channel in structures without any bandgaps. Such waveguides have potential applications in acoustic signal processing, imaging and vibration isolation..

 

Biographical Sketch: Raj Kumar Pal received his bachelor’s degree in mechanical engineering from the National Institute of Technology, Trichy, India, followed by his master’s degree in the same field from the Indian Institute of Science, Bangalore, India. He then worked in industry for a year before starting doctoral graduate studies at the University of Illinois, Urbana Champaign. He earned a Ph.D. in Theoretical and Applied Mechanics, followed by postdoctoral appointments in the School of Aerospace Engineering, Georgia Institute of Technology, and in the mechanical and civil engineering department at the California Institute of Technology. Since 2019, he is an Assistant Professor in the mechanical and nuclear engineering department at Kansas State University. He works broadly at the intersection of solid mechanics and dynamics, investigating fundamental wave propagation phenomena with the goal of novel engineering applications.