News

New technology from Prof. Thanh Nguyen published in Science

The latest issue of Science features a new technology invented and developed by our very own assistant professor Dr. Thanh D. Nguyen. Prof. Nguyen’s brainchild, developed during his postdoc with Prof. Robert Langer at MIT, offers the latest advance in 3D manufacturing for microstructures of biomaterials: StampEd Assembly of polymer Layers, or SEAL for short. The reliance of current 3D printing techniques on potentially toxic impurities (e.g. UV-curing agents) for formulating printable inks poses clear problems for bio and medical applications. SEAL, on the other hand, can create nearly any 3D micro-objects of pure biopolymers (e.g. polymers used for surgical sutures) with complex geometries and at high resolution. Such enhanced biocompatibility of fabricated 3D microstructures for medical applications enables a broad scope of exciting new possibilities. For example, Prof. Nguyen along with other researchers at MIT used SEAL to create 3D core-shell micro-particles containing biological cargos (e.g. vaccines), which can be programed to sequentially release at different times or even at specific locations within the body. The compelling implications of this technique include the potential for a new set of single-injection vaccines/drugs, which could avoid the repetitive, painful, expensive, and inconvenient injections often required to administer vaccines and drug therapies like insulin or growth hormone. To view the article, click here

 

New Device for Testing Heart Health

George LykotrafitisDr. George Lykotrafitis and his student Kostyantyn Partola have been featured for their development of a device that tests blood viscosity – an important indicator of heart health.  Kostyantyn has had support from the Accelerate UConn program as well as the Connecticut Center for Entrepreneurship and Innovation Fellowship program to support the commercialization of the technology.  More information on their work can be found at UConn Today: http://today.uconn.edu/2017/09/new-device-testing-heart-health/

 

Prof. Thanh Nguyen garners the NIH R21 Trailblazer Award for his work on “Bionic Self-stimulated Cartilage.”

Dr. Nguyen received a NIH R21 trailblazer young investigator award for a project entitled “bionic self-stimulated cartilage”, in collaboration with Dr. Cato Laurencin at UConn Health, school of medicine. This highly-interdisciplinary project aims to integrate a new biopolymer, developed in Nguyen Lab, with a chondrocyte tissue graft to create an exciting hybrid artificial cartilage. The PIs hope this bionic cartilage in implantation will be able to adapt to mechanical joint-force for obtaining an optimal cartilage growth and regeneration. Results from this research will have a great impact for an effective treatment of cartilage diseases such as osteoarthritis. The research is a collaborative work between Nguyen lab (UConn Storrs) in materials processing, device fabrication, tissue integration, and in vitro study, and Laurencin Lab (UConn Health) in animal study and in vivo assessment.

Emeritus Prof. Lee Langston goes to Italy with the ASME History & Heritage Committee

Professor Emeritus Lee Langston, a member of the ASME History & Heritage Committee, recently traveled to Palermo, Italy, to represent UConn and ASME at the ceremony recognizing the engine collection housed within the University of Palermo’s Museum of Engines and Mechanisms.

From left to right: Giuseppe Genchi, Terry Reynolds, and Lee Langston. Photo by ASME/Wil Haywood.

More details can be found on the ASME website.

Since the invention of the wheel, mechanical innovation has critically influenced the development of civilization and industry as well as public welfare, safety and comfort. Through its History and Heritage program, ASME encourages public understanding of mechanical engineering, fosters the preservation of this heritage and helps engineers become more involved in all aspects of history.

Professor Emeritus Lee Langston is actively involved in the committee’s ASME Landmark program. Historic Mechanical Engineering Landmarks are existing artifacts or systems representing a significant mechanical engineering technology. They generally are the oldest extant, last surviving examples typical of a period, or they are machines with some unusual distinction. Over 270 Landmarks have been designated.

 

Stephany Santos Wins Ford Fellowship

Stephany Santos Wins Ford Fellowship.Stephany Santos, a doctoral candidate in the imLab, and advised by Prof. David Pierce, recently won a prestigious Ford Foundation Fellowship from the National Academies of Sciences, Engineering, and Medicine.

This fellowship recognizes both her research in cartilage mechanics and her work in engineering education, communication, and mentorship. Her work in engineering education includes quantifying the impact of interaction with female undergraduate research assistants on K-12 students during educational outreach activities designed to engage and educate these students on multiscale biomechanics.

For more information see, http://sites.nationalacademies.org/PGA/FordFellowships/PGA_047958.

David Pierce receives the 2017 NSF CAREER award for his work on collagen microcracks.

This is the National Science Foundation’s most prestigious award to support early-career faculty to become role models in integrating outstanding research and educational objectives to advance the mission of their departments.

Osteoarthritis afflicts nearly 20% of the US population; costs over $185.5BN a year (2007); and causes pain, functional limitations, lost earnings and depression – yet we understand neither its cause nor progression. Researchers have extensively characterized microcracks in bone and sub-millimeter-scale fissures in osteoarthritis, but Dr. Pierce’s lab recently discovered that impact usually considered non-injurious in fact causes micrometer-scale cracks in collagen of human cartilage. These microcracks may lead to pre-clinical osteoarthritis, but the extent to which they grow under repetitive loads during normal daily activities is unknown.

Prof. Pierce’s project, titled “Understanding Collagen Microcracks in Soft Tissues Under Normal Body Loads,” proposed to perform fundamental research to understand growth of collagen microcracks in soft tissues by validating novel computer simulations with new experimental data. Understanding and modeling cartilage microcracks will likely lead to new therapies and/or lifestyle modification strategies for osteoarthritis patients. The research will not only investigate the characterization of one of the earliest observable signs of deterioration likely related to osteoarthritis, but also facilitate studies of other tissues and engineering materials.

 

Prof. Julian Norato awarded the 2017 ONR Young Investigator Award

UConn assistant professor Julian Norato is part of an exclusive group pf 34 scientists nationwide that have been selected to receive The Office of Naval Research Young Investigator Award, which supports early career academic scientists and engineers that “show exceptional promise for doing creative research.”

Prof. Norato’s project, titled “Computational Synthesis of Composable-Material Structures from Manufacturing-Friendly Primitives”, will advance topology optimization methods for the design of structures made with composite materials with consideration for their manufacturing.   Topology optimization is a computational technique that determines the optimal distribution of material within a given space to, for example, design the lightest structure that will not mechanically fail under applied loads. Existing topology optimization methods excel at exploring designs made of homogeneous, isotropic materials—that is, materials that have uniform, direction-independent properties throughout the structure.  However, there is a substantial need to advance topology optimization techniques that render designs that are made of heterogeneous, anisotropic materials, such as composite materials, and that take into consideration the geometric requirements of existing composite manufacturing processes.  By exploring designs that take advantage of the unique properties of composite materials and that can be more readily translated to fabrication, the techniques advanced by this project have the potential to render significant weight savings and improve the mission performance of Naval aircraft and ship structures.

 

Prof. Norato leads UConn’s Structural Optimization Laboratory where he and his graduate students develop computational state-of-the-art computational approaches to:

  • Incorporate realistic failure mode criteria
  • Render designs that are cost-effective and/or close-to-fabrication for a given manufacturing process
  • Simultaneously consider the design of a structure and a material system

These capabilities will expand the role of computational design of structures and material systems in the early concept design and advance our ability to push the limits of physical performance (including multifunctional systems), lightweight, and cost effectiveness beyond what is possible today.

 

 

Prof Jiong Tang honored by the ASME Hartford chapter.

Prof. Jiong Tang is honored with the Distinguished Engineer of the Year Award presented by the ASME Hartford Section during 2017 Annual Engineer’s Night Awards Banquet.

From left: Profs. Xu Chen, Horea Ilies, ZhanZhan Jia, Xinyu Zhao, Jiong Tang, Vito Moreno, Dianyun Zhang, Thanh Nguyen, Abhishek Dutta.
ASME 31st Annual Engineer’s Night and Awards Dinner

Celebrating women’s contributions to aerospace history and technology with Prof. Dianyun Zhang.

On March 11th 2017, Prof. Dianyun Zhang, graduate student Weijia Chen, and senior Mechanical Engineering students Meagan Ferreira and Nomin Munkhbat attended the “Women Take Flight” event hosted by the New England Air Museum located in Windsor Locks, CT. The event featured activities and presentations celebrating women’s contributions to aerospace history and technology.


Dr. Zhang represented UConn’s Mechanical Engineering department at the event to promote engineering to young children by showing new advancements. Specifically, the group demonstrated how composites are manufactured to the young boys and girls (as well as adults) who attended the event. Curious guests were shown that carbon fiber and the glass fiber are flexible and soft. Then they were asked if they could assess the composite panels, and if they believed they were made from those same materials. Guests were then told about the VARTM (vacuum assisted resin transfer molding) process, and exactly how those flexible fibers can become as tough as metal through curing. It was also explained how the composites are replacing airplane parts that generally use metal. (Contributed by Nomin Munkhbat and Meagan Ferreira)