News

Our Senior Design Program Leads to Mutually Beneficial Partnerships with Industry

Through our Senior Design Program, industrial sponsors put the bright UConn ME undergraduate students to work on a real-world problem that they are interested in researching, while reaping the benefits of our faculty’s experience and expertise. For students, this program is an opportunity to synthesize and apply the classroom engineering knowledge they have acquired. They delve further into various aspects of product development process, and are experiencing first hand how ethics affect engineering decisions, how professionals communicate ideas and the day-to-day implications of design decisions and of intellectual property.

Here is a podcast, part of Simsbury Bank’s “Manufacturing Matters” initiative, in which CEO Martin Geitz discusses a UConn Engineering Senior Design partnership with EDAC Technologies that has provided a mechanism to hire some of our talented engineering graduates while providing solutions to one of the company’s major challenges.

 

From left to right in the video: Kenneth Osborn (Engineering Manager, EDAC), Emily Sweeney (UConn senior), Martin Geitz (CEO, Simsbury Bank) and Prof. Vito Moreno (UConn).

 

A new, nature-inspired self-healing rubber developed by Prof. Li and his collaborators from USC.

A severed 3D-printed shoe pad repairing itself (Submitted Photo/An Xin and Kunhao Yu)

A new paper published by Prof. Ying Li and his collaborators from University of Southern California in NPG Asia Materials provide the details of a new class of self-healing rubber that is inspired by the healing of natural tissues.

For more details, please see the news article from UConn Today.

 

 

Jiong Tang to serve as the General Chair for ASME IDETC & CIE 2019

Prof. Jiong Tang will serve as the general conference chair for the American Society of Mechanical Engineers’ international annual design conference in Anaheim CA. The 2019 ASME International Design Engineering Technical Conference (IDETC) and Computers and Information in Engineering Conference (CIE) will take place between August August 18 – 21, 2019  at the Anaheim Convention Center.

Dan Wang and Professor Xu Chen win Best Paper Award at the 2018 International Symposium on Flexible Automation

ME graduate student Dan Wang and Professor Xu Chen won the Best Paper (Theory) of the 2018 International Symposium on Flexible Automation (ISFA) for their paper titled “Synthesis and Analysis of Multirate Repetitive Control for Fractional-order Periodic Disturbance Rejection in Powder Bed Fusion.”

The ISFA started in 1986 under the co-sponsorship of the American Society of Mechanical Engineers (ASME) and the Institute of Systems, Control and Information Engineers (ISCIE) in Japan. The symposium focuses on automation technologies that are essential to meet the increasing requirements of modern manufacturing and other related fields, such as dynamical systems, robotics, logistics, biomedical systems, and healthcare systems.

The 2018 symposium was held in Kanazawa, Japan from July 15 to July 19. Every year the symposium recognizes two best papers appearing in the Proceedings and presented at the Symposium. One award emphasizes contribution to theory, and the other emphasizes significant or innovative applications/practice. Criteria for selection include the quality of the written and oral presentation, the technical contribution, timeliness, and practicality. Each award consists of a certificate and an honorarium of $1,000.

Wang and Chen’s paper discusses control approaches to advance the quality of repetitive energy deposition in powder bed fusion (PBF) additive manufacturing, pertaining specifically to the repetitive deposition of the laser or electron beam energy. It addresses an intrinsic limitation in control schemes that can leverage the periodicity of task patterns to significantly improve system performance. The long-term impacts will include greater quality assurance of the manufactured parts, new capabilities for large-scale 3D printing of extreme materials, and smarter machines and automation in additive manufacturing processes.

Strain Improves Performance of Atomically Thin Semiconductor Material

Dr. Michael Pettes and his graduate student Wei Wu have significantly improved the performance of an atomically thin semiconductor material by stretching it, an accomplishment that could prove beneficial to engineers designing the next generation of flexible electronics, nano devices, and optical sensors. The findings mark the first time scientists have been able to conclusively show that the properties of atomically thin materials can be mechanically manipulated to enhance their performance, Pettes says. Such capabilities could lead to faster computer processors and more efficient sensors.  The process the researchers used to achieve the outcome is also significant in that it offers a reliable new methodology for measuring the impact of strain on ultrathin materials, something that has been difficult to do and a hindrance to innovation.  More information is available at UConn Today:  http://s.uconn.edu/4ad