Author: Orlando E

Design, Build. Compete. UConn Formula SAE Among the Best in the World.

by Kassidy Manness
ME Communications
kassidy.manness@uconn.edu

Formula SAE Club ready for another exciting year of designing, building, and competing.

“Design. Build. Compete” is the motto that drives the determined and creative minds that make up the Formula SAE club here at UConn. Their club, consisting of many Mechanical Engineering students, is responsible for designing and building, all on their own, a formula style race car that is supposed to compete in two competitions by the time May rolls around.

Every season, the club, headed by president, Cara Connors, breaks up into subteams that are each responsible for one aspect of the car. An average meeting, which happens every Tuesday and Saturday, consists of the head of each subteam reporting out any updates, set backs, or solutions they have and saying what their next steps are. At this point in the year, the main thing each club member is working on is the design portion where they work on calculations and talk with the other subteams to make sure it will all work together. As the year continues, they will then focus more of the building and fabrication work before going into the testing of the car to ensure that it works. Everything is done by students, though; the driving, testing, and manufacturing, even though the do have some help from local and extended sponsors in order to help with the manufacturing costs and equipment.

Consistently, throughout the season, the club looks at the past models they have created and evaluate what went right and what can be developed further. Connors was able to mention a few of the changes and development they were making to the design this year, “Last year was the first year that we had an aerodynamic package, so an undertray on the car. We’re looking to develop that further, validating the design we had last year, and making it better for this upcoming year. We’re looking at better ways to mount that undertray. There’s a lot of weight optimization going on.”

What all of this ultimately leads up to for the club are two competitions, the Formula Michigan, which occurs in May, and the Formula North Competition, which happens in Ontario, Canada at the beginning of June. UConn’s club has done consistently well at each competition, but they usually base the success of their car on the Michigan competition, as it is the largest one. It, generally, has about 120 international teams that come out. This past year, UConn’s Formula SAE placed 11th out of the 120 teams. Connors said that they are hoping to crack the top 10 this year.

At the competition, there is more than just racing that occurs in order to decide the winning cars. There are multiple dynamic events that they compete in to test the car’s physical performance in acceleration, skidpad, autocross, and endurance. There are also static events that are evaluated to look at the cars design presentation, business marketing presentation, cost report, and fuel economy.

 

Formula SAE is open to any major, not just Mechanical Engineers. They meet every Tuesday at 6:30 pm and Saturday at 12 pm at their shop on Depot Campus. For any interested, new members, you can go to the Visitor’s Center and be picked up by club members thirty minutes before the meeting begins. If you have any other questions, you can email the president, Cara Connors, at cara.connors@uconn.edu.

Living Electronics for Bio-interfacing

Abstract: Electronic and biological systems represent two limiting thermodynamic models in terms of functioning and information processing. By converging the dynamic and self-adaptable features of bio-machinery and the rationally defined/programmed functionalities of electronic components, there is potential to evolve new capabilities to effectively interrogate and direct biologically significant processes, as well as novel bio-inspired systems/device concepts for a range of engineering applications. The intrinsic mismatches in physiochemical properties and signaling modality at biotic/abiotic interfaces, however, have made the seamless integration challenging. In this talk, I will present our recent effort in forging their structural and functional synergy through the design and development of: (1) bio-hybrid electronics, where living transducers, such as functional biomolecules, organelles, or cells, are integrated with electronic transducers using spatially-defined, biocompatible hydrogel as the interfacing material; and (2) biosynthetic electronics, where biogenic electron pathways are utilized to naturally bridge the gap between internal biological and external electrical circuits. Blurring the distinction between livings and non-livings, these efforts have the potential to facilitate the cross-system communication and broadly impact how complex structures/functions may be designed/engineered.

Biographical Sketch: Xiaocheng Jiang is an Assistant Professor in the Department of Biomedical Engineering at Tufts University. He received his Ph.D. in physical chemistry from Harvard University with Professor Charles Lieber, with a focus on the design and application of nanoscale materials and nanoelectronic devices. Prior to joining Tufts, he was an American Cancer Society postdoctoral fellow at Massachusetts General Hospital, where he worked with Prof. Mehmet Toner on functional microfluidics for early cancer diagnostics. His current research concentrates broadly at the interface of materials and biomedical science, with specific interests in bio-inspired/bio-integrable electronics. He is a recipient of NSF CAREER award (2017) and AFOSR young investigator award (2018).

 

Oscillating Foils for Energy Harvesting

Abstract: The water flow through tidal estuaries create a large source of renewable energy that is highly predictable and close to urban centers, yet mostly untapped in the United States.  This presentation gives an overview of recent efforts to develop a hydrokinetic energy harvesting device well-suited for tidal flows, that is based on the oscillating motion of hydrofoils. Inspired from the flapping flight of birds and bats, an oscillating hydrofoil generates energy through lift generation, which is augmented by a large unsteady leading-edge vortex. This talk will highlight the computational efforts that drove prototype development and will examine the flow physics important for energy capture. It will also discuss the formation and downstream trajectory of the leading-edge vortex, which is important for informing the configuration of oscillating foil arrays. Knowing the path and topology of shed vortices can enable downstream foils to be placed strategically and recapture the kinetic energy of vortices, thus boosting the system efficiency of an oscillating foil array.

Biographical Sketch: Dr. Jennifer Franck is an expert in computational fluid dynamics (CFD) and is interested in unsteady flow phenomena and flow control of turbulent flows.  She is currently an Assistant Professor in Engineering Physics at University of Wisconsin-Madison. Prior to moving to Madison, she was on the faculty at Brown University’s School of Engineering for seven years where she won numerous teaching and advising awards.  She received her undergraduate degree in Aerospace Engineering from University of Virginia, followed by a M.S. and Ph.D. from California Institute of Technology. She was awarded an NSF Postdoctoral Fellowship to computationally explore flapping flight mechanisms at Brown University from 2009-2011. Dr. Franck is currently interested in problems related to renewable energy, including wind and tidal energy applications.

Overview of MDAO at the Air Force Research Laboratory and a Bio-inspired Method for Topology Optimization of Aircraft Structures

Abstract: The mission  of AFRL’s Multidisciplinary Science and Technology Center (MSTC) is to discover, assess, and exploit coupled system behavior for optimization of revolutionary aerospace vehicles through the application of multidisciplinary design, analysis, and optimization (MDAO). To this end, MSTC performs  in-house research and sponsors efforts ranging from basic developments in FEA, CFD, design space exploration, physics-based design, and experimental testing through technology demonstration vehicles including the X-56 and XQ-58A. An area of ongoing interest in MSTC is the development of topology optimization (TO) methodologies for the design of efficient aircraft structure. Commercially available tools for TO have successfully been employed for aircraft components such as lightweight brackets and other localized components. However, it remains a challenge to utilize these density-based methods to design aircraft primary structure that is subject to diverse design constraints including aeroelastic deformations, flutter, panel buckling, stress requirements, and control effectiveness criteria. To address this challenge, a biologically-inspired technique based on the production rules governing cellular division of living organisms has been developed and applied to identify optimal topological layouts of air vehicle structure. Preliminary results demonstrate over 10% reductions in structural weight is from TO compared to optimally-sized structure with conventional structural topology. In addition, the performance  of resulting designs has been validated using 3D printing and static/modal testing of subscale models. This talk will provide an overview of ongoing efforts in AFRL’s MSTC and will introduce the bio-inspired method for the topology optimization of aircraft structures.

Biographical Sketch: Joshua Deaton is a Research Aerospace Engineer in AFRL’s Aerospace Systems Directorate’s Multidisciplinary Science and Technology Center (MSTC). In this role Dr. Deaton develops and applies multidisciplinary computational design technologies and leads collaborative efforts with industry, academia, and other government partners to transition multidisciplinary design technology to support the design of next-generation Air Force platforms. His primary research areas include coupled sensitivity analysis, structural and topology optimization, and nonlinear thermoelasticity. Dr. Deaton received his Ph.D. in Engineering with a focus on Computational Design and Optimization as well as his B.Sc. in Mechanical Eng. from Wright State University. He serves on the AIAA Multidisciplinary Design Optimization (MDO) Technical Committee and recently received the Outstanding Technical Contribution – Science Award from the AIAA Dayton-Cincinnati Section for his contributions in multidisciplinary sensitivity analysis for geometrically nonlinear aerospace structures.

 

Instabilities in Soft Materials: Emergent Heterogeneity and Other Surprises

Abstract: During development, instabilities develop in the brain, giving it its characteristic wrinkled shape. Other soft tissues, including skin, the bladder, and the airway mucosa, also exhibit instabilities and the resulting folds, wrinkles, and creases. Instabilities in these soft tissues, which often contain multiple layers with distinct properties, are very complex and still not well understood. The focus of this talk will be on the unique features of instabilities in soft layered materials, including their sensitivity to different sources of compression, the interactions of adjacent layers and interfaces, the influence of boundary conditions, and the emergence of heterogeneous layer thickness as a result of wrinkling. I will share results from theoretical, computational, physical, and imaging approaches, and discuss their implications for the study of the developing brain.

Biographical Sketch: Maria Holland is the Clare Boothe Luce Assistant Professor of Aerospace and Mechanical Engineering at the University of Notre Dame in Notre Dame, IN. She earned her M.S. and Ph.D. from Stanford University in the Department of Mechanical Engineering with Prof. Ellen Kuhl, and her bachelor’s degree in mechanical engineering from the University of Tulsa, graduating Phi Beta Kappa. Her research is in computational biomechanics, using solid mechanics and computational tools to address important questions about complex soft materials, including the brain. Through collaborations with clinicians and experimentalists, she aims to understand the development of the human brain and how it relates to the brain’s form and function. Additionally, she works to extend the functionality of traditional engineering methods to encompass soft, growing materials.

Two Faculty Searches for the 2019-2020 Academic Year

For the 2019-202 academic year we have two open positions: one open rank and the second at the Assistant or Associate professor levels. The start date is August 2020.

We are looking for exceptional candidates in advanced and digital manufacturing. Areas of interest include, but are not limited to:

  • intelligent robotics and automation,
  • applied controls,
  • additive manufacturing,
  • computational design of products and processes,
  • uncertainty quantification and reliability, and
  • data analytics and machine learning informed by physics.

To apply follow this link.

 

Professor Matheou’s Exhibit @ the Benton Blends Art and Science With Teaching

George Matheou and his exhibit at the William Benton Museum of Art. (UConn Photo/Eli Freund)

By: Alexandra Meropoulos, Student Written Communications Specialist, UConn School of Engineering

Art and science are two fields that appear to be worlds apart at first glance, but according to George Matheou, assistant professor of mechanical engineering, the intersection between the two are actually extremely important. This notion became the inspiration behind his art exhibit called Fluid Dynamics in Art and Nature at the William Benton Museum of Art. 

Read more by following this link.

The Challenge of Modeling and Simulation for Molten Salt Nuclear Reactors

Abstract: The rapidly expanding interest in molten salt reactors (MSRs), particularly as small modular reactors, is resulting in the generation of multiple design concepts with efforts at a variety of early developmental stages. Various companies and organizations in a number of countries are looking at such systems to be safe, economical, and rapidly deployable power systems. For efficient design, operation, and regulation of MSRs it will be necessary to have the ability to simulate reactor behavior across the spectrum from neutronics and fluid dynamics to corrosion and salt phase behavior. MSRs have not been considered since the original prototype, the Molten Salt Reactor Experiment, that ran successfully from 1965-1969 at Oak Ridge National Laboratory, and thus there is little legacy of useful information. Aspects of potential modeling and simulation of future molten salt reactors will be discussed with respect to the unique challenges they present. Among the current needs are extensive thermophysical and thermochemical properties describing salts and other reactor materials. In particular, the ability to compute chemical and phase equilibria (e.g., potential solid phase precipitation) throughout the molten salt loop(s). Activities and opportunities in these areas will be discussed as contributing to development of a knowledge base for molten salt reactor technology.

Biographical Sketch: Ted Besmann is Professor and SmartState Chair for Transformational Nuclear Technologies, directing the General Atomics Center at the University of South Carolina. Dr. Besmann received his B.E. in chemical engineering from New York University, M.S. in nuclear engineering from Iowa State University, and Ph.D. in nuclear engineering from the Pennsylvania State University. In 1975 he joined ORNL and subsequently became a Group Leader and Distinguished Member of the Research Staff. Besmann’s nearly 40 years at Oak Ridge National Laboratory included a joint appointment in the Nuclear Engineering Department at the University of Tennessee. Besmann has over 160 refereed publications, and is a Fellow of both the American Ceramic Society and the American Nuclear Society. He is chair of the Organization for Economic Cooperation and Development-Nuclear Energy Agency (OECD-NEA) Working Party on Multi-Scale Modeling of Nuclear Fuels and Structural Materials and is vice-chair of their Thermodynamics of Advanced Fuels-International Database program. Dr. Besmann is also Co-Director of the DOE Energy Frontier Research Center led by USC, the Center for Hierarchical Waste Form Materials.

It’s a bit of a stretch: selective, flexible mechanical sensors towards VR, healthcare, and robotics applications

Abstract: In this talk, I will discuss work related to mechanically “programming” soft sensors to respond to a particular mechanical deformation. Advances in 3D-printing, soft polymer fabrication, and other rapid fabrication processes have made the vision of conformal and stretchable mechanical sensors for wearable devices and soft robotics possible. One limitation of these sensors is their low selectivity between different modes of mechanical deformation, such as strain, torsion, and bending.

I will present recent work in enhancing the selectivity of stretchable sensors by using non-planar sensor morphology to bias the sensor towards a particular deformation mode. I will discuss projects including designing a sensor with electrically-tunable sensitivity and the fabrication origami-patterned, deformation-selective flexible sensors.

Biographical Sketch: Kris Dorsey is an assistant professor of engineering in the Picker Engineering Program at Smith College. She was a President’s Postdoctoral Fellow at the University of California, Berkeley and University of California, San Diego. Dr. Dorsey graduated from Carnegie Mellon University with a Ph.D. in Electrical and Computer Engineering and earned her Bachelors of Science in Electrical and Computer Engineering from Olin College.

She founded The MicroSMITHie Lab at Smith College to investigate micro- and miniature-scale sensor design and to prepare undergraduates for graduate study in engineering. Her current research interests include strain-stable, hyperelastic components, novel morphology soft sensors, and sensors for soft robots and wearable devices.

Dr. Dorsey has co-authored several publications on hyperelastic strain sensors, novel soft lithography processes, and the stability of gas chemical sensors. In 2019, she received the NSF CAREER award.