Month: September 2020

Mesoscale Physics and Stochastics in Energy Storage

WebEx Link: http://s.uconn.edu/meseminarf20

Password: Sent by Email.

Abstract: Advances in electrochemical energy storage are critical toward enabling vehicle electrification and renewable energy integration into the electric grid. Recent years have witnessed an urgent need to accelerate innovation toward realizing improved and safe utilization of high energy and power densities, for example in lithium-ion batteries for electric vehicles. These are complex, dynamical systems which include coupled processes encompassing electronic/ionic/diffusive transport in solid/electrolyte phases, electrochemical reactions, diffusion induced stress generation, and thermal transport in porous electrodes. Fundamental understanding of the underlying transport, chemistry, microstructure, and interface interactions in porous electrode architectures is of critical importance. This talk will highlight the role of mesoscale complexations and stochasticity with examples from different battery chemistries.

Bio Sketch: Partha P. Mukherjee is currently an Associate Professor of Mechanical Engineering at Purdue University. Before joining Purdue, he was an Assistant Professor and Morris E. Foster Faculty Fellow of Mechanical Engineering at Texas A&M University (TAMU). Prior to starting his academic career at TAMU in 2012, he worked for four years in the U.S. Department of Energy Labs; a staff scientist (2009- 2011) at Oak Ridge National Laboratory, and a Director’s research fellow (2008-2009) at Los Alamos National Laboratory. He received his Ph.D. in Mechanical Engineering from the Pennsylvania State University in 2007. Prior to PhD studies, he worked as an engineer for four years at Fluent India Pvt. Ltd, a fully-owned subsidiary of Fluent Inc., currently Ansys Inc. He received the Scialog Fellows’ recognition for advanced energy storage, Purdue University Faculty Excellence Award for Research, visiting faculty lectureship at the International Center for Theoretical Physics (ICTP, Trieste, Italy), TMS Young Leaders Award, emerging investigator distinction from the Institute of Physics, to name a few. His research interests are focused on mesoscale physics and stochastics of transport, chemistry and microstructure interactions, including an emphasis in the broad spectrum of energy storage and conversion.

Dr. Farhad Imani joins the ME Department

Proposal on the Space Needle

We are happy to welcome Dr. Farhad Imani as a new Assistant Professor in our Department of Mechanical Engineering. Prof. Imani obtained his PhD from Penn State in 2020 and brings to UConn his expertise in advanced manufacturing, and specifically in Industrial Engineering and Operations Research.

His research interests focus on data analytics, machine learning, statistical learning, and decision theory for process monitoring and control, system diagnostics and prognostics, quality and reliability improvement with applications in advanced manufacturing

Using BME Modeling Tools to Aid in Clinical Diagnosis of Orthopedic Injuries

Webex Link: http://s.uconn.edu/meseminarf20km

Abstract: Over 250,000 anterior cruciate ligament (ACL) injuries occur every year in the United States alone, costing over $1.5 billion dollars in rehabilitation and reconstruction care. However, despite extensive rehabilitation, upwards of 56% of individuals fail to return to previous functional levels years after treatment due to lingering neuromuscular impairments. These impairments result in inactivity and the development of osteoarthritis (OA), osteoporosis and cardiovascular disease, which are estimated to cost $62.1 billion, $14 billion, and $316.6 billion, respectively, a year in their own right. Thus, the total cost of these injuries indicates a much bigger problem than we realize. The prevalence of early onset OA in the post-ACL reconstruction population indicates the need for a better understanding of the relationship between neuromuscular control and musculoskeletal dynamics to improve the effectiveness of post ACL injury rehabilitation care. Therefore, the objective of our work is to pioneer new post ACL rehabilitation modalities that produce positive gait adaptation by combining innovative experimental studies, machine learning and computational modeling to engineer novel gait protocols and dynamic braces that better support the knee by engaging muscles during dynamic movement. 

Biographical Sketch: Dr. Kristin Morgan is an Assistant Professor in the Biomedical Engineering at the University of Connecticut. She received her B.S., M.S., and Ph.D. degrees all in Biomedical Engineering from Duke University, Virginia Commonwealth University, and the University of Tennessee, respectively. She was a postdoctoral scholar at the University of Kentucky where she was awarded the Lyman T. Johnson Postdoctoral Fellowship. Dr. Morgan has also been the recipient of a Whitaker International Summer Grant Fellowship and is a National Institutes of Health Program for Excellence & Equity in Research (PEER) Fellow, and a United States Bone and Joint Institute Young Investigator. Dr. Morgan’s research interests are focused on the identification of novel rehabilitation protocols to optimize long-term lower extremity injury outcomes and innovative metrics to identify the restoration of healthy neuromuscular control. Her work has been funded by General Dynamics Electric Boat and the Office of Naval Research.