Month: February 2019

Credible Computational Solid Mechanics for Critical Decision Making in Engineering

Abstract: Advanced computational modeling, high performance computing technology, and extensive knowledge of simulation form a strong and unique foundation of research, development and engineering at Sandia National Laboratories that enable the Lab to meet its commitment of ensuring the national security of the United States.  Computational models are utilized extensively to predict the complex behavior of materials in multiphysics environments across a wide range of length and time scales, and analysts run simulations routinely to evaluate the performance and reliability of complicated engineering systems designed for national security applications.  In the past three decades, capabilities of simulation tools and models were advanced significantly, and numerous scientific questions and engineering challenges were resolved successfully with the help from computational simulations.  Examples include providing insight of non-linear material response in complex loading environments, examining the integrity of engineering structure when test data are insufficient, modeling microstructure and its linkage to material properties, and predicting aging and material property changes during service.  Although the progress of developing computational predictive capabilities has been highly encouraging so far, it is well recognized in the computational mechanics community that many issues in theories and numerical algorithms yet to be addressed.  While modeling and simulation are being used increasingly as the information-generating and decision-making tools in the cycle of engineering product from design to retirement, how to create and demonstrate credibility of computational analyses, especially for applications in the solid mechanics discipline, is becoming an inevitable challenge for model developers and computational analysts simply because neither codes nor models are perfect.

At this seminar, years of efforts at Sandia to advance the capability of computational solid mechanics modeling for national security and industry applications will be presented, highlighting their challenges and successes.  Lessons learned from bridging physics at different length scales and coupling different simulation codes will be shared.  Most importantly, strategies, including effective and ineffective ones, of developing and presenting model credibility will be discussed. 

Biographical Sketch: Dr. Eliot Fang is the Manager of the Solid Mechanics Department at Sandia National Laboratories. He received his B.S. degree from the National Central University in Taiwan and M.S. and Ph.D. degrees from the University of California at Santa Barbara, all in mechanical engineering. Dr. Fang’s research interest is to apply modeling approaches and high performance computing to elucidate mechanisms of material behaviors and to predict material behaviors at various length scales in different environments.  He has over 60 publications and 70 invited presentations reporting his technical accomplishments and contributions to materials modeling and mechanical simulations.  Dr. Fang is a Fellow of the American Society of Mechanical Engineers and a recipient of the 2006 Asian American Engineer of the Year Award.

Modeling and Control Additive Manufacturing Processes for Ceramics and Glass

Abstract: Additive Manufacturing (AM), which has been referred to as the 4th revolution in manufacturing, is a truly disruptive class of manufacturing. In AM, location-specific mechanical properties can be tailored by grading materials and microstructure, complex geometries that cannot be manufactured with traditional processes can be fabricated, and cost-effective part repair and low volume manufacturing can be realized. However, AM processes have tremendous variability and are not well understood. This has led to significant research efforts into controlling these processes. This talk will discuss our research efforts in the control-oriented modeling and feedback control of two AM processes. The first process is a ceramic extrusion process known as Freeze-form Extrusion Fabrication (FEF) of ceramics, where an aqueous-based ceramic paste is extruded in a freezing environment. This process is ideal for the fabrication of ceramic parts with complex geometries and multiple materials. We will explore the major variations in this process, empirical modeling techniques to describe its dynamic behavior and construct control-oriented models, and methods to control the extrusion force. We will then transition to our work in the first principle, control-oriented modeling of the extrusion force and filament freezing time, and the understanding of the process that is elucidated from these models. The second AM process we will discuss is a new direct energy deposition process to additively manufacture glass. In the AM glass process, filament or fiber is fed into a molten pool of glass formed by a laser energy source. The process can be used to fabricate fully dense transparent free-form parts for gradient index optics, complex structures for embedded optics and waveguides, and freeform structures that open up the glass design space. We will discuss our work in understanding the process and discovering process parameter spaces suitable for fabrication. Two issues that limit the AM glass process are bubble formation and the challenge of placing the glass in a desired location. We will discuss our work in controlling these two issues and discuss future directions for this process.

Biographical Sketch: Dr. Robert G. Landers (landersr@mst.edu) is a Curators’ Distinguished Professor of Mechanical Engineering in the Department of Mechanical and Aerospace Engineering at the Missouri University of Science and Technology (formerly University of Missouri Rolla) and served as the department’s Associate Chair for Graduate Affairs for eight years. He received his Ph.D. degree in Mechanical Engineering from the University of Michigan in 1997. His research interests are in the areas of modeling, analysis, monitoring, and control of manufacturing processes (laser metal deposition, glass direct energy deposition, selective laser melting, freeze–form extrusion fabrication, wire saw machining, metal cutting, friction stir welding), estimation and control of lithium ion batteries and hydrogen fuel cells, and digital control applications. He has over 200 refereed technical publications, including 79 journal articles, an h index of 22 with 1734 citations (Scopus), and $6.4M in funding. He received the Society of Manufacturing Engineers’ Outstanding Young Manufacturing Engineer Award in 2004 and the ASME Journal of Manufacturing Science and Engineering Best Paper Award in 2014, is a Fellow of ASME, a senior member of IEEE and SME, and a member of ASEE. He is currently a program manager at the National Science Foundation, served as associate editor for the ASME Journal of Dynamic Systems, Measurement, and Control (2009–2012), ASME Journal of Manufacturing Science and Engineering (2010–2014), and the IEEE Transactions on Control System Technology (2006–2012), and is currently an associate editor for Mechatronics.

Reversible Solid Oxide Cells and Protonic Ceramic Fuel Cell Technologies as Flexible, Dispatchable Energy Resources

Abstract: ​L​ow-cost, high efficiency, electrical energy storage (EES) is needed for the future electric grid which will include more variable energy resources, such as wind and solar. Movement towards predominately low-carbon energy systems requires renewable resources and could be accelerated by integration of high temperature electrochemical technologies. Currently, substantial penetration of wind and solar resources into the electric power grid is challenged by their intermittency and the timing of generation which can place huge ramping requirements on central utility plants, which are also limited in dynamic response capability. This talk will discuss employing novel EES systems derived from reversible fuel cell technology and advances in protonic ceramics as dispatchable energy resources. Reversible solid oxide cells (ReSOCs) are capable of providing high efficiency and cost-effective electrical energy storage. These systems operate sequentially between fuel-producing electrolysis and power-producing fuel-cell modes with storage of reactants and products (CO​2/​ CH​4g​ ases) in tanks for smaller-scale (kW) applications and between grid and natural gas infrastructures for larger scale (MW) systems. In this talk, the use of ReSOC technology for both grid-scale energy storage and as a Power-to-Gas platform that can address issues with high renewables penetration is presented. In stand-alone systems, strategies for effective thermal management and balance-of-plant systems integration in both operating modes are critical to achieving high roundtrip efficiencies. Design challenges and techno-economic analyses which suggest levelized cost of storage that ranges between 15 – 30 $/MWh are highlighted. A brief overview of recent progress in the performance of intermediate temperature (500-600°C) protonic ceramic fuel cells (PCFCs) which have demonstrated both fuel flexibility and increasing power density that approach commercial application requirements will also be given. The PCFCs investigated in this work are based on a BaZr​0.8Y​ ​0.2O​ ​3-δ(​ BZY20) thin electrolyte supported by BZY20/Ni porous anodes, and a triple conducting cathode material comprised of BaCo​0.4F​ e​0.4Z​ r​0.1Y​ ​0.1O​ ​3-δ(​ BCFZY0.1). Performance characteristics, modeling challenges, and techno-economic outlook of mixed-charge conducting PCFCs are presented.

Biographical Sketch: ​Dr. Robert Braun is Associate Professor of Mechanical Engineering at the Colorado School of Mines. He received a Ph.D. from the University of Wisconsin–Madison in 2002. From 2002-2007, Dr. Braun was at United Technologies Fuel Cell and Research Center divisions where he last served as project leader for UTC’s mobile solid oxide fuel cell (SOFC) power system development program. Dr. Braun has multidisciplinary background in mechanical and chemical engineering and his research focuses on energy systems modeling, analysis, techno-economic optimization, and numerical simulation of transport phenomena occurring within fuel cell and alternative energy systems. His industry experience encompasses development of low-NOx burners, CO​2-​ based refrigeration, and fuel cell technologies (including PEM, PAFC, MCFC, SOFC, and PCFC). Dr. Braun’s current research activities focus on high efficiency hybrid fuel cell/engine systems, renewable energy pathways to synthetic fuel production, grid-scale energy storage, novel protonic ceramics, supercritical CO​2 p​ ower cycles, and dispatch optimization of concentrating solar power plants. He is a Link Energy Foundation Fellow, a member of ASME, ECS, and ASHRAE, and holds 6 U.S. patents.