Month: March 2018

An Interdisciplinary View of Interfaces: Perspectives Regarding Emergent Phase Formation

Abstract: The emergent properties arising from the interactions of phases including interfacial contributions (surfaces) and phase evolution at the mesoscale present new opportunities, as well as challenges, for materials performance and functionality. This presentation will highlight interfacial contributions to system level performance in diverse fields: i) mixed ionic and electronic conducting (MIEC) materials in membranes and solid oxide fuel cells, membranes and solid state Li-ion batteries and ii) ceramic waste forms for nuclear waste immobilization.  Mixed ionic-electronic conductors are widely used in devices for energy conversion and storage. Grain boundaries and surfaces in these materials have nanoscale spatial dimensions, which can generate substantial resistance to ionic transport.  Composite systems that preferentially form “emergent” phases may be used to enhance the grain boundary ionic conductivity, while surface coatings may be used to target enhanced kinetics.  Durable ceramic waste forms that incorporate a wide range of radionuclides have the potential to broaden the available disposal options and to lower the storage and disposal costs associated with advanced nuclear fuel cycles. Studies at the interface between disciplines provide unique case studies for understanding materials behavior; for example, knowledge in one application area on how to constrict tunnels to trap mobile Cesium in nuclear waste can be used to develop strategies to enhance tunnel mobility for Li, Na and K in battery applications.

 

Biographical Sketch: Kyle Brinkman is the Dean’s Associate Professor in the Department of Materials Science and Engineering at Clemson University in Clemson, South Carolina. He received his Ph.D. in Materials Science and Engineering from the Swiss Federal Institute of Lausanne in Switzerland (EPFL), obtained an M.S. in Materials Science and Engineering and a B.S. degree in Chemical Engineering from Clemson University. He joined Clemson in 2014 from the DOE’s Savannah River National Laboratory (SRNL) where he was a Principal Engineer in the Science and Technology. Prior to working at SRNL, Kyle was a fellow of the Japanese Society for the Promotion of Science working at the National Advanced Institute of Science and Technology (AIST) in Tsukuba, Japan from 2005-2007. Kyle has authored or co-authored over 80 peer-reviewed technical publications and government reports. He was the recipient of the Karl Schwartzwalder Professional Achievement in Ceramic Engineering (PACE) from the American Ceramic Society in 2015, the TMS Young Leaders International Scholar Award in 2015, the US Department of Energy, Fuel Cycle Research and Development Early Career Researcher Award in 2013, and the SRNL Laboratory Director’s Early Career Exceptional Achievement Award in 2011. Kyle serves as the Materials Advantage (MA) and Keramos faculty advisor for Clemson’s undergraduate students in Materials Science and Engineering.

Functional Magnetic Nanomaterials: What does the future hold?

Abstract: Functional magnetic nanomaterials, whose properties are fundamentally different from their bulk counterparts, have attracted a global interest owing to their prospective applications in advanced spintronics and nanomedicine. In this lecture, I will discuss fundamental aspects of nanomagnetism, properties of magnetic materials upon size reduction to the nanoscale, and recent advances in synthesis, characterization and applications of magnetic nanomaterials and their hybrid nanostructures. In particular, I will demonstrate how magnetic (iron oxide) nanoparticles can be effectively exploited for selective drug delivery, magnetic hyperthermia, and biodetection. Finally, I highlight our recent discovery of strong room-temperature ferromagnetism in transition metal dichalcogenide (VSe2) as the material is reduced from bulk (micro-size) to a single layer (less than nm). This is a new type of magnetic nanomaterial which has the potential to transform the field of van der Waals spintronics. 

 

Biographical Sketch: Dr. Phan is an Associate Professor of Physics at the University of South Florida, USA. He received B.S., M.S., and Ph.D. degrees in Physics from Vietnam National University (2000), Chungbuk National University – South Korea (2003), and Bristol University – United Kingdom (2006), respectively. His research interests lie in the physics and applications of magnetic materials, with an expertise on the development of novel materials exhibiting magnetocaloric and magnetoimpedance effects for energy-efficient magnetic refrigeration and smart sensor technologies. He has published more than 240 peer-reviewed journal papers (h-index: 40 from Google Scholar), 4 review papers, 4 book chapters, and 1 text book. Presently, he serves as Editor for Journal of Electronic Materials, Editor for Applied Sciences, and Managing Editor for Journal of Science: Advanced Materials and Devices. He is a regular reviewer for more than 100 major journals, with 10 “Outstanding Referee” awards from various ISI journals. He is the winner of the 2017 Outstanding Research Achievement Award of the University of South Florida. He has delivered keynote, plenary and invited talks at professional meetings on Magnetism and Magnetic Materials (MMM, ICM, APS, MRS, ISAMMA) and organized international conferences on Nanomaterials, Energy, and Nanotechnology.

Multiscale Atomistics for Defects in Electronic Materials

Abstract: Ionic solids are important for electronic and energy storage/conversion devices. Examples include ferroelectrics and solid oxides. Defects in these materials play a central role in enabling their properties: for example, the electromechanics of ferroelectrics occurs by the nucleation and growth of domain wall defects, and solid oxide ionic conduction is through the motion of point defects. I will talk about our efforts to develop multiscale atomistic methods to understand the structure of defects in these materials. The central challenge is the long-range nature of the electrostatic interactions coupled with the nonlinearity of the short-range interactions.

 

Biographical Sketch: Kaushik Dayal is Professor of Engineering at Carnegie Mellon University. He received his B.Tech. at the Indian Institute of Technology Madras and his M.S. and Ph.D. in Mechanical Engineering at Caltech. His research interests are in the area of theoretical and computational multiscale methods applied to functional materials and electromagnetic effects. His research has been recognized by young investigator awards from ARO, AFOSR and NSF, the Eshelby and Leonardo da Vinci medals, and the Carnegie Institute Early Career Fellowship. He has held visiting appointments at the University of Bath, University of Bonn, National Energy Technology Laboratory and Air Force Research Laboratory.