Month: October 2024

10.11.2024 Dr. Yi Ren – Arizona State University

Two-player zero-sum differential games with one-sided information and state constraints, aka Football

Date: October 11, 2024; Time: 2:30 PM Location: PWEB 175

Abstract: Enabling embodied intelligence requires robots to plan according to unknown and potentially adversarial intents of interacting agents. This talk will focus on one scenario where theory and methods are underdeveloped. Specifically, we study zero-sum differential games with state constraints and one-sided information, where the informed player (Player 1) has a categorical payoff type unknown to the uninformed player (Player 2). The goal of Player 1 is to minimize his payoff without violating the constraints, while Player 2 either aims to violate the state constraints or, failing that, maximize the payoff. Examples of such games include man-to-man matchup in football and missile defense scenarios. Due to the zero-sum nature, Player 1 may need to delay information release or even manipulate Player 2’s belief to take full advantage of information asymmetry, while Player 2’s strategy will need to balance all possible consequences. Existing solvers such as CFR+ (e.g., for Poker) are applicable, but are not scalable to continuous action spaces as is often the case in robotics. We will discuss efficient solvers for these games by leveraging unique structural properties of their value functions.

Biographical Sketch: Dr. Yi Ren is an Associate Professor in the Department of Mechanical and Aerospace Engineering at Arizona State University. His research spans a range of topics at the intersection of machine learning and engineering, with recent focuses on differential game theory, GenAI model attribution, and representation learning for materials. He has published in both machine learning conferences, including ICLR and ICML, and engineering journals, such as IEEE Transactions on Robotics and Acta Materialia. Dr. Ren received his Ph.D. in Mechanical Engineering from the University of Michigan in 2012 and his Bachelor’s degree in Automotive Engineering from Tsinghua University in 2007. Outside of research, he enjoys playing soccer and spending time with his children.

The Combined Use of Modeling and Large-scale Experiments in the Development of Fire Protection Solutions

Speaker: Dr. Francesco Tamanini – FM Global
Date: October 4, 2024; Time: 2:30 PM Location: PWEB 175

Abstract: Practical fire protection challenges are often not easily amenable to solutions that can be developed from a single approach.  The tools that are more frequently used include: engineering correlations, reduced-scale physical modeling, large-scale testing, computer simulations.  The last two find wide application in addressing loss prevention questions.  Large-scale testing, however, is very expensive and not always feasible.  CFD modeling, on the other hand, is not fully reliable in the absence of experimental validation.  These limitations can be overcome by combining the two approaches.  The seminar will discuss two cases where that was done and will highlight the challenges that were encountered.

Biographical Sketch: After doing initial work on the computer modeling of fires and coordinating for several years FM’s research activities in the area of explosions, Dr. Tamanini moved in 2004 to the Consulting Research Scientist position and eventually to Sr. Research Fellow.  In his current role, he provides support to the Manager of Research, and to the entire scientific and engineering staff, on issues spanning all research topics of interest to FM.  They include: fire testing, material flammability, CFD modeling of fires and explosions, impact of natural hazards (wind, flood, earthquake) on property, risk assessment, equipment reliability, and material damage. During April 2021-June 2023 he has been the Acting Director for the Equipment, Cyber and Materials Science Area.

He has contributed original work in several technical areas:

  • extinguishment of fires by water sprays;
  • computer modeling of turbulent buoyancy controlled flames;
  • measurements of the flammability properties of materials;
  • large scale experiments on the combustion behavior of hydrogen releases into confined volumes;
  • definition of the reactivity characteristics of silane;
  • vent sizing requirements for explosions in layered vapor/air mixtures;
  • engineering tools for dust explosion protection vent sizing;
  • protection of storage of cellulose nitrate film;
  • interpretation of ceiling layer temperatures in large-scale fires; and
  • various other fire problems, as well as dust and gas explosions.

 

Franco started working at Factory Mutual Research in 1974 after receiving a Ph.D. in applied physics from Harvard University.  He also holds an MS degree in aeronautics from the California Institute of Technology and a Laurea in mechanical engineering from the Politecnico di Torino in Italy.  He has served as the Chairman of the Eastern States Section of the Combustion Institute, is the 1996 recipient of the Bill Doyle award of the AIChE, and has published numerous refereed papers and technical reports.