Abstract: Thermoelectric coolers (TECs), also known as Peltier coolers, are solid-state cooling devices powered by a direct (dc) current. They offer high reliability, silent operation, and do not require the use of refrigerant chemicals that can be harmful to the environment. However, TEC performance is generally limited as compared to traditional vapor-compression refrigeration systems and this has limited their relevance and applicability, especially when other necessary system components, such as heat exchangers, are considered. RTX Technology Research Center (RTRC) has developed an advanced heat exchanger / heat sink technology on a DARPA program that provides >50% enhancement in heat removal at equivalent operating conditions. Such an improvement means that an air-cooling system can deliver heat-removal performance that approaches that of liquid cooling. When these DARPA heat exchangers are combined with TECs, the resulting cooling system can, for the first time, perform to the level required for galley refrigeration on commercial aircraft. The resulting system, known as SpaceChiller, comes at an opportune time and fills a technology need that is arising in the aerospace industry as airlines start to fly increasingly long distances using small, single-aisle aircraft.
Biographical Sketch: Dr. Pearson has been with RTX Technology Research Center (RTRC, previously known as UTRC) in January 2011. Since then, he has worked on a wide range of projects spanning most of United Technologies’ and RTX’s diverse business units including Pratt & Whitney, Collins Aerospace, Raytheon, and Carrier. Major research areas have included advanced heat exchangers, eco-friendly refrigeration systems, thermally engineered metamaterials, and thermoelectric power generation and cooling. He became a Team Leader of the Heat Transfer team in November 2020. Since October 2022, he has been leading Thermofluid Science Discipline, a team of 15 staff that conduct high-risk and low-TRL research across RTX’s businesses, focused on the company’s unique challenges in heat transfer, fluid dynamics, large-scale thermodynamic systems, and interfacial physics. Dr. Pearson holds a Ph.D., M.S., and B.S. degree in Mechanical & Aerospace Engineering from the Illinois Institute of Technology in Chicago, IL, where he worked on NASA-sponsored work in electrodynamics and was an NSF Graduate Research Fellowship recipient. He has over 23 granted and pending patents and 10 peer-reviewed journal publications.