Exploring the Multiphysics of the Brain during Development, Aging, and in Neurological Diseases

Abstract: The human brain undergoes a myriad of changes during its lifetime. From a mechanics perspective alone, it is mesmerizing how the brain develops during early life, transforms into this highly functional, albeit still very enigmatic, organ that makes us unique, and is subjected to injury, disease, and ultimately age-related degeneration like every other part of the body. Despite extensive efforts to mechanically characterize brain tissue for more than two decades, the relationship between microstructure, state of health, and mechanical behavior remains elusive. On the modeling side, the computational biomechanics community has had extensive interest in modeling traumatic brain injury, neurodegeneration, stroke, surgical guidance, and, the most intensely studied, brain folding during early development. Our group’s motivation to pursue multiphysics modeling of the brain is simple: while the biology of brain aging and many neurological diseases is very well established, its coupling to the brain’s mechanical response in the form of cerebral atrophy and tissue degeneration/damage remains understudied.

In the present talk, we will explore our work on inferring the growth field during brain development, modeling brain shape changes during Alzheimer’s disease, and the mechanical origin of white matter degeneration during brain aging.

 

Biographical Sketch: Johannes Weickenmeier is an assistant professor of mechanical engineering and the director of the Center for Neuromechanics at Stevens Institute of Technology. Dr. Weickenmeier leads the Soft Matter Biomechanics Laboratory that combines medical image analysis, mechanical testing, and numerical methods to understand and predict soft tissue behavior. His group’s current work focuses on understanding and developing physics-based models that describe brain changes during develop, healthy aging, in Alzheimer’s disease, and multiple sclerosis. For more information, go to www.weickenmeierlab.com or follow his group on Twitter @weickenmeierlab.