http://s.uconn.edu/meseminar4.8.22
Abstract: Overcoming endemic limitations of existing manufacturing processes can have long lasting socio-economic impacts. I will focus on three innovations that have such an impact. First, I will discuss our work on Intense Pulsed Light Sintering of nanoparticles. I will show how this process alleviates the scalability, damage, and device performance limitations that plague state-of-the-art approaches for manufacturing planar, flexible, conformal, and structural electronics. I will also discuss our discovery of an inherent self-damping behavior in the process, unexpected shape-dependent dynamics of nanoparticle sintering, and the first atomistics-informed scalable model of sintering in nanowire ensembles.
Secondly, I will describe a recent breakthrough in overcoming the throughput-resolution tradeoff that plagues material extrusion-based additive manufacturing (MatEx). I will show how coupling a new toolpath approach with our discovery of continuous material retraction and advancement breaks the above tradeoff, while enhancing economical access to diverse part sizes and geometries and enabling unprecedented resilience to tool failure. I will discuss key parametric trends in the process, new thermal models that reveal the unique temperature history, and potential collaborations with researchers in design and synthesis of materials and in machine learning based control.
Finally, I will describe a magnetics-controlled-plasma based approach to laser micromachining that goes beyond the limits of optical diffraction or wavelength specific-material absorption without modifying the substrate or using near-field techniques. I will discuss key considerations for machine design and process design; the wide materials capability of the process; and the potential to build collaborations in machine learning, control, and process monitoring.
Biographical Sketch: Dr. Rajiv Malhotra obtained his PhD in Mechanical Engineering from Northwestern University and joined Oregon State University as an assistant professor in 2014. He has been an assistant professor at Rutgers University since 2017 where he has established the Advanced Manufacturing Sciences Laboratory, funded by both federal and industry sources. His work has yielded 73 publications including in diverse journals such as Journal of Materials Processing Technology, Journal of Manufacturing Processes, Applied Materials and Interfaces, Advanced Functional Materials, Additive Manufacturing, Nanotechnology, and Sustainable Energy and Fuels. He has been a guest-editor for special issues in ASME and SME journals and is currently an associate editor for Manufacturing Letters, Journal of Manufacturing Processes, and Nature Scientific Reports. He is also a track chair in the ASME Manufacturing Science and Engineering Conference and a scientific committee member in the North American Manufacturing Research Conference. His research and service efforts were recognized by the 2017 Young Manufacturing Engineer Award from the Society of Manufacturing Engineers and the 2018 Associate Editor of the Year Award from the Society of Manufacturing Engineers. Dr. Malhotra is also passionate about integrating sustained mentorship with challenging research opportunities to create a systemic pipeline of students from the undergraduate to the graduate levels.