Month: January 2022

The mechanical behaviors of bone across multiple length scales

http://s.uconn.edu/meseminar1/28/22

Abstract: Bone is strong, tough yet lightweight, which can be attributed to its complex hierarchical structures across multiple length scales. The factors contributing to these superior properties are still not completely understood, especially its structure at the sub-micron- and nano-scales. The morphology and mechanical properties of bone are also affected by diseases and treatment. This study presents the results of combined experimental and computational studies of the mechanical behaviors and structures of bone across multiple length scales. Mechanical testing coupled with micro X-ray computed tomography (micro-CT) enabled concurrent non-invasive characterization of 3D full-field bone microstructures and bone mechanical properties. Atomic force microscopy (AFM) was used to map the surface morphology and elastic properties of microscale structures (cement line and sub-lamellae) and nanoscale ultrastructure (mineralized collagen fibril (MCF) and extrafibrillar matrix (EFM)) in bone. The experimental results are integrated with computational models. The results provided a better understanding of the structure and the mechanical behaviors of bone across multiple length scales, laid the foundation for the bio-inspired design of new materials, and shed light on the improvement of implant treatment.

 

Biographical Sketch: Dr. Jing Du is an Assistant Professor of Mechanical Engineering at Penn State University. She received her B.S. and M.S. degrees in Mechanical Engineering and Materials Science and Engineering, respectively, from Tsinghua University and a Ph.D. degree in Mechanical and Aerospace Engineering from Princeton University. Before joining Penn State, she was a postdoctoral scholar in the School of Dentistry at the University of California, San Francisco (UCSF). Her current areas of research interests include mechanical behaviors of biological tissues and biomaterials, biomedical devices, and bio-inspired design.

Deformable Multimodal Electronics for Biomedicine

http://s.uconn.edu/meseminar1/21/22

Abstract: Recent advances in electronics enable powerful biomedical devices that have greatly reduced therapeutic risks by monitoring vital signals and providing means of treatment.  Conventional electronics today form on the planar surfaces of brittle wafer substrates and are not compatible with complex body tissues.  Soft and implantable devices can help us better understand the behavior and effects of various diseases.  This talk presents the challenges, design strategies, and novel fabrication processes behind a potential medical device that (a) integrates with human physiology, and (b) dissolves completely after its effective operation.  The integration of the deformable multimodal sensing platform with stretchable antennas, micro-supercapacitor arrays, and energy harvesting modules further yields a self-powered stretchable wireless sensing system for next-generation bio-integrated electronics and environmental sensing.

Biographical Sketch: Dr. Huanyu “Larry” Cheng is an Assistant Professor of Engineering Science and Mechanics with courtesy appointments in the Department of Biomedical Engineering, Department of Mechanical Engineering, Department of Architectural Engineering, Department of Industrial and Manufacturing Engineering, and the Department of Materials Science and Engineering at Penn State University. His research group focuses on the design, fabrication, and application of stretchable and dissolvable multimodal sensors for biomedicine. Larry has co-authored more than 100 peer-reviewed publications with total citations >13,000 and an H-index of 46 according to Google Scholar. His work has been recognized through the reception of numerous awards, including the 2022 Minerals, Metals & Materials Society (TMS) Functional Materials Division (FMD) Young Leaders Professional Development Award, the 2021 NIH Trailblazer Award, 2021 Scialog Fellow in Advancing BioImaging, 2021 Frontiers of Materials Award from TMS, First and Second Place in the Ben Franklin TechCelerator Pitch in 2020 and 2021, respectively, ACS Petroleum Research Fund New Investigator in 2018, Forbes 30 Under 30 Science category in 2017, elected member of the Global Young Academy for scientists under age 40 in 2016, among others. He also serves as the associate editor for 7 journals and reviewer for 185 international journals.