Webex Link: http://s.uconn.edu/meseminarf20km
Abstract: Over 250,000 anterior cruciate ligament (ACL) injuries occur every year in the United States alone, costing over $1.5 billion dollars in rehabilitation and reconstruction care. However, despite extensive rehabilitation, upwards of 56% of individuals fail to return to previous functional levels years after treatment due to lingering neuromuscular impairments. These impairments result in inactivity and the development of osteoarthritis (OA), osteoporosis and cardiovascular disease, which are estimated to cost $62.1 billion, $14 billion, and $316.6 billion, respectively, a year in their own right. Thus, the total cost of these injuries indicates a much bigger problem than we realize. The prevalence of early onset OA in the post-ACL reconstruction population indicates the need for a better understanding of the relationship between neuromuscular control and musculoskeletal dynamics to improve the effectiveness of post ACL injury rehabilitation care. Therefore, the objective of our work is to pioneer new post ACL rehabilitation modalities that produce positive gait adaptation by combining innovative experimental studies, machine learning and computational modeling to engineer novel gait protocols and dynamic braces that better support the knee by engaging muscles during dynamic movement.
Biographical Sketch: Dr. Kristin Morgan is an Assistant Professor in the Biomedical Engineering at the University of Connecticut. She received her B.S., M.S., and Ph.D. degrees all in Biomedical Engineering from Duke University, Virginia Commonwealth University, and the University of Tennessee, respectively. She was a postdoctoral scholar at the University of Kentucky where she was awarded the Lyman T. Johnson Postdoctoral Fellowship. Dr. Morgan has also been the recipient of a Whitaker International Summer Grant Fellowship and is a National Institutes of Health Program for Excellence & Equity in Research (PEER) Fellow, and a United States Bone and Joint Institute Young Investigator. Dr. Morgan’s research interests are focused on the identification of novel rehabilitation protocols to optimize long-term lower extremity injury outcomes and innovative metrics to identify the restoration of healthy neuromuscular control. Her work has been funded by General Dynamics Electric Boat and the Office of Naval Research.