Month: August 2017

Mechanics of Blood Clots and Fluctuating Lipid Bilayers

Abstract: Blood clots are required to stem bleeding and are subject to a variety of stresses, but they can also block blood vessels and cause heart attacks and strokes. We measured the compressive response of human platelet-poor plasma (PPP) clots, platelet-rich plasma (PRP) clots and whole blood clots and correlated these measurements with confocal and scanning electron microscopy to track changes in clot structure. Stress-strain curves revealed four characteristic regions, for compression-decompression: 1) linear elastic region; 2) upper plateau or softening region; 3) non-linear elastic region or re-stretching of the network; 4) lower plateau in which dissociation of some newly made connections occurs. Our experiments revealed that compression proceeds by the passage of a phase boundary through the clot separating rarefied and densified phases. This observation motivates a model of fibrin mechanics based on the continuum theory of phase transitions, which accounts for the pre-stress caused by platelets, the adhesion of fibrin fibers in the densified phase, the compression of red blood cells (RBCs), and the pumping of liquids through the clot during compression/decompression. Our experiments and theory provide insights into the mechanical behavior of blood clots that could have implications clinically and in the design of fibrin-based biomaterials. As a second topic we will consider thermal fluctuations of lipid bilayer membranes. Typically, membrane fluctuations are analyzed by decomposing into normal modes or by molecular simulations. We propose a new approach to calculate the partition function of a membrane. We view the membrane as a fluctuating elastic plate and discretize it into triangular elements. We express its energy as a function of nodal displacements, and then compute the partition function and covariance matrix using Gaussian integrals. We recover well-known results for the dependence of the projected area of the membrane on the applied tension and recent simulation results on the dependence of membrane free energy on geometry, spontaneous curvature and tension. As new applications, we compute elastic and entropic interactions of inclusions in membranes.

Biographical Sketch: Prashant Purohit is currently Associate Professor in the Department of Mechanical Engineering and Applied Mechanics at the University of Pennsylvania. He got his PhD at Caltech in 2002 studying martensitic phase transitions in solids. His current interest is in problems at the intersection of mechanics, physics and biology. Of particular interest are problems in which thermal fluctuations, or entropy, plays a significant role in the mechanics. Examples of such problems include DNA phase transitions, fluctuating filaments and networks and the mechanics of lipid bilayers. Prashant has also worked on nanomechanics of flexoelectric solids and carbon nanotube foams.

Particle-Resolved Simulations of Complex Multi-Phase Flows

Abstract: Multiphase flows are ubiquitous in a wide range of natural processes and engineering applications. Although efforts to compute multiphase flows started as early as the beginning of the computational fluid dynamics (CFD), the progress was rather slow mainly due to the existence of interfaces that continuously evolve in time and often undergo large deformations leading to topological changes such as breakup and coalescence. In the case of confinement, the fluid-fluid interface strongly interacts with the complex channel wall and usually involve small features such as thin liquid films that are difficult to resolve computationally. Multi-physics effects such as soluble surfactant, phase change, chemical reactions, moving contact line and viscoelasticity make the problem even more complicated and challenging for computational simulations. In this talk, I will discuss our work towards addressing these challenges. I will first describe a front-tracking method developed for particle-resolved simulations of multiphase flows, where all relevant continuum length and time scales are fully resolved in all phases. Special emphasis will be placed on treatment of soluble surfactants, viscoelasticity and phase change (droplet evaporation and burning). Sample results will be presented for various multiphase flows encountered or inspired by bio/microfluidic applications. The microfluidic applications generally involve highly laminar low Reynolds number flows but the numerical method is not restricted to low Reynolds numbers and can be directly applied to turbulent multiphase flows at moderate and even high Reynolds numbers depending on available computational resources. Sample results will also be presented about effects of soluble surfactant on weakly turbulent bubbly flows at moderate Reynolds numbers. The talk will conclude with future directions and applications of presented method to large multi-scale and multi-physics problems of practical interest.

 

Biography: Dr. Muradoglu is a professor of Mechanical Engineering at Koc University. He received his BS degree in Aeronautical Engineering from Istanbul Technical University (ITU) in 1992, and MS and PhD degrees both from Cornell University in 1997 and 2000, respectively. He also worked as a postdoc at Cornell for about 18 months before joining the Koc University faculty in 2001 as an assistant professor where he became an associate professor in 2007 and a full professor in 2016. He has had visiting positions at Harvard, Notre Dame and Princeton Universities, and is currently visiting the University of Michigan, Ann Arbor. Dr. Muradoglu’s work has been recognized by multiple awards including the Turkish Academy of Sciences outstanding young scientist award (TUBA-GEBIP) (2009), Middle East Technical University encouragement award (2009) and the Scientific and Technological Research Council of Turkey (TUBITAK) encouragement award (2010). He has been an associate member of Turkish Academy of Sciences since 2012.