Month: April 2017

David Pierce receives the 2017 NSF CAREER award for his work on collagen microcracks.

This is the National Science Foundation’s most prestigious award to support early-career faculty to become role models in integrating outstanding research and educational objectives to advance the mission of their departments.

Osteoarthritis afflicts nearly 20% of the US population; costs over $185.5BN a year (2007); and causes pain, functional limitations, lost earnings and depression – yet we understand neither its cause nor progression. Researchers have extensively characterized microcracks in bone and sub-millimeter-scale fissures in osteoarthritis, but Dr. Pierce’s lab recently discovered that impact usually considered non-injurious in fact causes micrometer-scale cracks in collagen of human cartilage. These microcracks may lead to pre-clinical osteoarthritis, but the extent to which they grow under repetitive loads during normal daily activities is unknown.

Prof. Pierce’s project, titled “Understanding Collagen Microcracks in Soft Tissues Under Normal Body Loads,” proposed to perform fundamental research to understand growth of collagen microcracks in soft tissues by validating novel computer simulations with new experimental data. Understanding and modeling cartilage microcracks will likely lead to new therapies and/or lifestyle modification strategies for osteoarthritis patients. The research will not only investigate the characterization of one of the earliest observable signs of deterioration likely related to osteoarthritis, but also facilitate studies of other tissues and engineering materials.

 

Prof. Julian Norato awarded the 2017 ONR Young Investigator Award

UConn assistant professor Julian Norato is part of an exclusive group pf 34 scientists nationwide that have been selected to receive The Office of Naval Research Young Investigator Award, which supports early career academic scientists and engineers that “show exceptional promise for doing creative research.”

Prof. Norato’s project, titled “Computational Synthesis of Composable-Material Structures from Manufacturing-Friendly Primitives”, will advance topology optimization methods for the design of structures made with composite materials with consideration for their manufacturing.   Topology optimization is a computational technique that determines the optimal distribution of material within a given space to, for example, design the lightest structure that will not mechanically fail under applied loads. Existing topology optimization methods excel at exploring designs made of homogeneous, isotropic materials—that is, materials that have uniform, direction-independent properties throughout the structure.  However, there is a substantial need to advance topology optimization techniques that render designs that are made of heterogeneous, anisotropic materials, such as composite materials, and that take into consideration the geometric requirements of existing composite manufacturing processes.  By exploring designs that take advantage of the unique properties of composite materials and that can be more readily translated to fabrication, the techniques advanced by this project have the potential to render significant weight savings and improve the mission performance of Naval aircraft and ship structures.

 

Prof. Norato leads UConn’s Structural Optimization Laboratory where he and his graduate students develop computational state-of-the-art computational approaches to:

  • Incorporate realistic failure mode criteria
  • Render designs that are cost-effective and/or close-to-fabrication for a given manufacturing process
  • Simultaneously consider the design of a structure and a material system

These capabilities will expand the role of computational design of structures and material systems in the early concept design and advance our ability to push the limits of physical performance (including multifunctional systems), lightweight, and cost effectiveness beyond what is possible today.