Month: November 2016

Transport of Heat & Momemtum in Non-Equilibrium Wall-Bounded Flows

Friday, November 18 • 2:30 PM – UTEB, Rm. 175

 

Christopher White, Associate Professor of Mechanical Engineering

University of New Hampshire, Durham, NH 03824

Abstract: Non-equilibrium wall-bounded flows, in which perturbation time scales are comparable to turbulent flow time scales, do not exhibit universal behaviors and cannot be characterized only in terms of local parameters. Pressure gradients, fast transients and complex geometries are among the sources that can perturb a flow from an equilibrium state to a non-equilibrium state. Since all or some of these perturbation sources are present in many engineering application relevant flow systems and geophysical flows, understanding and predicting the non-equilibrium flow dynamics is essential to reliably analyze and control such flows. This talk will describe zongoing work using complementary numerical and physical experiments to better understand the underlying physics, transition dynamics, and appropriate flow scaling in non-equilibrium, periodic wall-bounded flows. The overarching goal is to use the results from these scientific investigations to improve upon the robustness of engine computational fluid dynamics (CFD) models so that they can be used for engineering design of low emission, high-efficiency piston engines.

Biographical Sketch: Dr. White received his Ph.D. in Mechanical Engineering from Yale University in 2001. From 2001-2004 he was Postdoctoral Research Fellow at Stanford University. Following his post-doctoral work, he joined Sandia National Laboratories as a Senior Member of the Technical Staff in the Combustion Research Facility. His principal duties at Sandia included lead investigator in the Advanced Hydrogen Fueled Engine Laboratory. In 2006, he joined the Mechanical Engineering Faculty at the University of New Hampshire.

Dr. White’s research is broadly motivated by applications related to the production, storage, distribution, conversion, and end-use applications of energy. His research to date is of both fundamental and applied nature in the areas of combustion, piston engines, biomass, ocean energy, and turbulent drag reduction. His 2006 paper “The hydrogen-fueled internal combustion engine: a technical review” is designed as a Highly Cited Paper (top 1% in the field of engineering) by the Thompson Reuters Essential Science Indicators. He co-authored an Annual Review of Fluid Mechanics paper in 2008 titled “Mechanics and prediction of turbulent drag reduction with polymer additives”. In 2009, he received an NSF CAREER award to study the flow properties and rheology of liquefied biomass suspensions. He currently has funding from NSF, DOE, and ONR.

For additional information, please contact Prof. Ying Li at (860) 486-7110, yingli@engr.uconn.edu or Laurie Hockla at (860) 486-2189, hockla@engr.uconn.edu

Seminar of Reconfigurable Plasmonics and Metamaterials

Friday, November 11 • 2:30 PM – UTEB, Rm. 175

Reconfigurable Plasmonics and Metamaterials

11-novYongming Liu, Assistant Professor

Department of Mechanical and Industrial Engineering

Department of Electrical and Computer Engineering

Northeastern University, Boston, USA

Email: y.liu@neu.edu;

Group Website: http://www.northeastern.edu/liulab

Abstract: Plasmonics has become a very important branch in nano optics. It allows us to concentrate, guide, and manipulate light at the deep subwavelength scale, promising enhanced light-matter interaction, next-generation optical circuits, sub-diffraction-limited imaging, and ultrasensitive biomedical detection [1-3]. Furthermore, the assembly of judiciously designed metallic structures can be used to construct metamaterials and metasurfaces with exotic properties and functionalities, including anomalous refraction/reflection, strong chirality and invisibility cloak [4,5]. There is a pressing need of tunability and reconfigurability for plasmonics and metamaterials, in order to perform distinctive functionalities and miniaturize the device footprint. In this talk, I will present our recent work in reconfigurable plasmonics and metamateirals. First, I will discuss the first demonstration of reconfigurable plasmonic lenses operating in microfluidic environment, which can dynamically diverge, collimate and focus surface plasmons [6]. Second, I will present a novel graphene metasurface to fully control the phase and amplitude of infrared light with very high efficiency. It manifests broad applications in beam steering, biochemical sensing and adaptive optics in the crucial infrared wavelength range [7]. Finally, I will discuss origami-based, dual-band chiral metasurfaces at microwave frequencies. The flexibility in folding the metasurface provides another degree of freedom for geometry control in the third dimension, which induces strong chirality from the initial, 2D achiral structure [8]. These results open up a new avenue towards lightweight reconfigurable metadevices.

Biographical Sketch: Dr. Yongmin Liu obtained his Ph.D. from the University of California, Berkeley in 2009. He joined the faculty of Northeastern University at Boston in fall 2012 with a joint appointment in the Department of Mechanical & Industrial Engineering and the Department of Electrical & Computer Engineering. Dr. Liu’s research interests include nano optics, nanoscale materials and engineering, plasmonics, metamaterials, biophotonics, and nano optomechanics. He has authored and co-authored over 50 journal papers, including Science, Nature, Nature Nanotechnology, Nature Communications, Physical Review Letters and Nano Letters. Dr. Liu received Office of Naval Research Young Investigator Award (2016), 3M Non-Tenured Faculty Award (2016), Air Force Summer Faculty Fellowship (2015), and Chinese Government Award for Outstanding Students Abroad (2009). Currently he serves as an editorial board member for Scientific Reports, EPJ Applied Metamaterials and Nano Convergence.

References: [1] S. A. Maier, “Plasmonics: fundamentals and applications”, Springer Science+ Business Media (2007); [2] T. Zentgraf et al., Nature Nanotechnology 6, 151 (2011); [3] Y. M. Liu, et al., Nano Letters 12, 4853 (2012); [4] Y. M. Liu and X. Zhang, Chemical Society Reviews 40, 2494 (2011); [5] K. Yao and Y. M. Liu, Nanotechnology Review 3, 177 (2014); [6] C. L. Zhao et al., Nature Communications 4:2350 (2013); [7] Z. B. Li et al., Scientific Reports 5, 12423 (2015); [8] Z. Wang et al., manuscript in preparation.

For additional information, please contact Prof. Ying Li at (860) 486-7110, yingli@engr.uconn.edu or

Laurie Hockla at (860) 486-2189, hockla@engr.uconn.edu

Probing Thermophysical Properties of Micro/Nanostructured Materials Using Ultrafast Pump

Friday, November 4 • 2:30 PM – UTEB, Rm. 175

Probing Thermophysical Properties of Micro/Nanostructured Materials Using Ultrafast Pump- Probe Technique

xiaojia-xj-wang

Xiaojia “XJ” Wang

Benjamin Mayhugh Assistant Professor of Mechanical Engineering University of Minnesota, Minneapolis, MN

Abstract: Micro/nanostructured materials behave differently from their macroscale counterparts with regards to thermal energy transport at short time and length scales. The engineering of micro/nanostructures to tailor thermal properties for energy conversion has become an emerging field in thermal science. One of the grand challenges in this area is to achieve sufficient spatial and temporal resolutions for accurate thermal measurements of these materials. This talk will emphasize how ultrafast pump-probe technique, Time-Domain Thermoreflectance (TDTR) and its upgraded version, Time-Resolved Magneto-Optical Kerr Effect (TR- MOKE), can be used to probe thxiaojia-xj-wang2ermal properties with microscale spatial resolution and sub-picosecond temporal resolution. Examples include: 1) TR-MOKE as a novel way to explore the origins of the anisotropic thermal transport in black phosphorus with enhanced measurement sensitivity; and 2) nanoparticle-assisted localized heating for probing interfacial thermal resistance at nanometer scales.

Biographical Sketch: Dr. Xiaojia Wang started her official appointment as an assistant professor in the Department of Mechanical Engineering at the University of Minnesota, Twin Cities in 2014. Prior to this, she was a postdoctoral research associate in the Department of Materials Science and Engineering at the University of Illinois at Urbana-Champaign. She received her Ph.D. in Mechanical Engineering from the Georgia Institute of Technology in 2011, and her M.S. in 2007 and B.S. in 2004 from Xi’an Jiaotong University, China, all in Mechanical Engineering. Her current research focuses on utilizing ultrafast optical techniques to characterize thermal transport in micro/nanostructured materials and across material interfaces, and tailoring the radiative properties of micro/nanostructures for energy conversion and harvesting. For details, please visit her research group website: http://www.me.umn.edu/labs/mnttl/

For additional information, please contact Prof. Michael T. Pettes at (860) 486-2855, michael.pettes@uconn.edu or Laurie Hockla at (860) 486-2189, hockla@engr.uconn.edu